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Abstract—As networks continuously grow (keyword Internet of
Things) the configuration and management of industrial networks
gets more complex. Additionally the trend towards Ethernet
networks in the domain of industrial automation leads to the
adoption of new Ethernet based technologies for factory automa-
tion. One of these technologies is Software Defined Networking
(SDN), which provides a programmable and more flexible method
for network control through an abstract network view. This
work focuses on the evaluation of SDN in the field of industrial
automation. It provides the implementation of a prototype SDN
controller for direct multicast routing of industrial traffic in a
cyclic switched Ethernet network using the Ryu SDN framework.
For evaluation, experiments about the performance penalty
introduced by switch-controller-communication are performed.
An IEC 61499 compliant development environment is used for the
experiment definition. The experiment results and the prototype
implementation of the SDN controller showed that SDN provides
great opportunities for a flexible and reliable network setup in
the automation industry and is suited for real-time traffic.

Index Terms—SDN, UDP multicast routing, Ryu, IEC 61499,
switched industrial Ethernet

I. INTRODUCTION

The shift from mass production to individualized production
increases the demand for higher flexibility of plant and net-
work. SDN can be the future key technology to solve these up-
coming problems by providing a flexible and reliable method
for network control, which is achieved through the separation
of data and control plane in forwarding devices. This leads to
a programmable network and introduces additional network-
ing information that can influence the forwarding decision-
making.

The trend towards Ethernet based networks in industrial
automation [1] [2] makes SDN a highly auspicious technology
for networks of the fourth industrial revolution. The use
cases of SDN in the field of industrial automation are very
versatile. The main use cases are traffic engineering, e.g.,
for the separation of experimental and productive network
traffic, or security such as the implementation of innovative,
more advanced and highly customized security policies. The
programmability of the network is also important for the
reusability and reconfiguration of network nodes. In case the

network requirements change, the only entity that needs to
be reconfigured is the SDN controller, instead of every single
state-of-the-art device in the specific network segment.

A more specific use case for SDN in the field of industrial
automation is the shortest path routing of User Datagram
Protocol (UDP) multicast traffic in a ring topology, without
packet flooding and duplication. The first contribution of
this paper is an SDN controller implementation that fulfills
these requirements. The routing application uses topology and
multicast group information which are managed by the SDN
controller and results in the shortest path routing of multicast
packets to all hosts in the specific multicast groups. The second
contribution of this work is the evaluation of the performance
penalty introduced by the switch-controller-communication of
the SDN controller that is evaluated based on networking
experiments.

The paper is structured as follows: Section 2 gives essential
background information on SDN and related work is sum-
marized in Section 3. Section 4 describes the implementation
of the SDN controller for direct UDP multicast routing. The
performed experiments are summarized in Section 5 and
Section 6 concludes with the results and gives starting points
for future work.

II. BACKGROUND

The main difference between a state of the art networking
device and an SDN enabled networking device is the decou-
pled control and data plane. The data plane of a forwarding
device is responsible for packet transmission according to
forwarding rules installed on the plane. The control plane
contains information and algorithms on how to modify the
data plane entries (logic of the forwarding device). A state
of the art network device contains both planes, whereas an
SDN enabled forwarding device only contains a data plane.
The control plane (SDN controller) is for example located
on a general-purpose computer which is connected to the
forwarding device. This approach reduces the complexity of
networking device configuration by combining control planes
of different forwarding devices in a single entity - the SDN
controller. Another advantage of the centralized controller is978-1-5090-6505-9/17/$31.00 c© 2017 European Union



the enhanced network overview which enables more advanced
algorithms for network control. More information about SDN
can be found in “SDN: A Comprehensive Survey” [3].

The OpenFlow protocol [4] is an open source SDN protocol
for switch-controller-communication (SouthBound Interface).
It manages flow rules on OpenFlow enabled switches. The
most important entries of a flow rule are Match Fields and
Instructions. Match Fields specify the packet filter and In-
structions contain the performed action set that is executed in
case of a packet match. Such a match could for example be a
match on multicast destination IP address 239.192.0.1 which
could cause the actions “output at port 1” and “output at port
3” to be executed.

Ryu1 is a component-based, open source SDN framework
for programming network controllers in Python which sup-
ports various control protocols, e.g., OpenFlow v. 1.0 - 1.5,
Netconf or SNMP. A Ryu application is a single-threaded
event-handling entity which is able to send messages from
one Ryu application to another or receive external messages
for example events from an SDN enabled switch. Ryu is
widely used for research projects and education and provides
good sources for documentation which makes it very useful
framework for rapid prototyping.

III. RELATED WORK

The conceptual overview of SDN in the field of industrial
automation is given Cronberger et al. [1] and Khandakar et
al. [5]. [1] shows an overview of SDN in a conceptual way
in industrial automation with Cisco’s proprietary SouthBound
protocol onePK which is an alternative for OpenFlow. [5]
proposes the adoption of SDN in the field of Cyber-physical
System (CPS) by providing an architecture for software-
defined networks in industrial automation using an SDN adop-
tion of PROFINET called SDNPROFINET which supports
flexible communication and maintenance and allows easier
reconfiguration of factories.

Herlich et al. [6] evaluate SDN for industrial real-time
Ethernet traffic by a proof of concept on a virtual platform
showing typical use cases in the field of industrial automation
like traffic separation and reconfiguration of the network.

Henneke et al. [7] analyse requirements of SDN for the
realization of future industrial networks, for example real-time
monitoring of the network, stable and secure configuration
platforms and effective operation on legacy hardware, among
others.

Thiele et al. [8] provide a model for formal verification
of real-time capabilities in software-defined networks and
shows the synergies of Time-Sensitive Networking (TSN) and
SDN. The verification model is evaluated for a number of
SDN requests per switch, the SDN frame size, the SDN
processing time and the SDN traffic priorities. The formal
analysis showed that an SDN network latency well below
50ms is possible in Ethernet networks.

1https://osrg.github.io/ryu/

Corici et al. [9] implemented the SDN controller framework
openSDNCore and evaluated its performance on virtual hard-
ware using cbench for latency and throughput of the controller.

Pfrommer et al. [10] propose a model for static code
analysis with Frama-C/Para-C. They use Lua and OPC-UA
as means for ensuring a flexible runtime and support network
reconfiguration by the integration of an SDN controller.

Schweissguth et al [11] implemented an SDN controller that
uses a Time Division Multiple Access (TDMA) approach with
topology information and application requirements to route
traffic and guarantee real-time capabilities.

Jiang et al [12] propose an extended implementation of the
Dijkstra Shortest Path algorithm which takes the weight of
nodes into account (calculated from the statistics of the SDN
switch).

The related work mentioned here is either theoretical and
conceptional (e.g., [1], [5], or [6]) or running in an virtual
environment (e.g., [9], [12] or [12]). This work focusses on a
use case in the field of industrial automation which is evaluated
on real hardware.

IV. AN SDN CONTROLLER FOR DIRECT ROUTING OF
MULTICAST TRAFFIC

This section presents the concept for shortest path routing
of UDP multicast traffic in a network that contains a ring.
This concept is implemented and evaluated with an example
network managed by an SDN controller. The requirements for
the use case is given first, followed by the concept description
and the implementation including an example.

A. Use Case and Requirements Analysis

A typical use case for a network in the field of industrial
automation is publish/subscribe (UDP multicast) based com-
munication in a circular network topology [13].

Traditional switches flood (forward a packet on all ports)
multicast packets to make sure that every interested host re-
ceives the messages. Message flooding introduces the problem
of packet duplication for networks containing a ring. Consider
Figure 1 which shows an example network topology for this
use case. If H 1 sends a multicast packet to H 2 and H 3,
S 1 forwards the packet to S 2 and S 4 which would forward
the packet to H 2 and H 4 and twice to S 3. The problem
is not only that Host 3 receives the packet twice, but also
that Switch 3 forwards the packet from Switch 2 to Switch 4
and from Switch 4 to Switch 2 again because of the flooding
strategy which causes an infinite loop on the network. Every
host on this loop receives the packet multiple times, endlessly.

The specific use case and the resulting requirements for
an SDN controller which manages an industrial network can
be described like follows: The network controller, connected
to all SDN enabled switches, shall be able to directly route
UDP multicast traffic to the desired receivers via the shortest
paths without the need of flooding packets at any time, as
flooding causes packet duplication in a ring topology. The
routing of messages is based on multicast group management
and the topology discovery of the network. The forwarding

https://osrg.github.io/ryu/
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Fig. 1. Example network topology

delay of the traffic caused by the controller needs to be as low
as possible, which shall be achieved by preferring proactive
forwarding decisions to reactive decisions. The networking
scope is limited to switched Ethernet networks and all switches
need to support the OpenFlow protocol.

B. Concept Description

The SDN controller’s execution can be grouped into three
phases: configuration, operation and reconfiguration.

A communication pattern for UDP multicast traffic is
Publish/Subscribe, with Internet Group Management Protocol
(IGMP) for multicast group management. IGMP messages are
sent during the initialization of the communication in order to
configure the network. An IGMP packet does not only contain
information on which host belongs to which multicast group,
it also guarantees that the receiving hosts of multicast traffic
are discovered and added to the network topology before the
first multicast packet is sent, as the SDN controllers detect
hosts in their network segment when the first communication
happens.

An example ring topology can be seen in Figure 1 which
contains four embedded PCs (hosts H1, H2, H3 and H4),
connected to four SDN switches (S1, S2, S3 and S4) via their
Ethernet Interface (eth0) and one SDN controller (C1) that is
connected to all SDN switches via a traditional, commercial
off the shelf (COTS) switch.

The operation phase is characterized by the shortest path
routing of multicast traffic. Routing is especially important
for networks with a ring topology, as traditional switches
flood multicast packets to make sure that all hosts receive the
packets. Flooding packets in a ring topology causes packet
duplications without special switching hardware.

The shortest path routing solves this problem, by calculating
the path to every host in the multicast group and writing the
flows to all switches in the path. A packet from Host 1 to

Host 2 and Host 3 is sent via Switch 4 and Switch 3 and is
not duplicated on the ring, as the packet is not even forwarded
to Switch 2.

The second aspect of the shortest path routing is the delay
that is introduced by the switch-controller communication.
This delay can be reduced by not calculating the flows for
a single switch once the packet arrives at the switch (reactive
forwarding strategy), but for calculating the path for a packet
when the first switch receives it and modifying all flow
tables on switches in the packet’s path. This strategy reduces
the overhead for computation, as the path only needs to
be calculated once and not on every switch and makes the
forwarding pattern proactive except for the very first switch
in a path which means that the flows for a specific packet are
written to the switches before the actual forwarding happens.

The reconfiguration of the network can be realized by
flow modifications. In case the network topology (e.g., host
connects or link failure) or the multicast group information
(e.g., hosts join or leave a group) changes, the routing can
be adopted by removing the specific flows from the switches.
This will forward the following multicast packet affected by
the change to the SDN controller (table-miss flow entry) and a
new shortest path for the new network setup can be calculated
and written to the switches.

The steps the SDN controller needs to perform in order to
successfully route multicast packets in a network containing
a ring is summarized in the following listing. The only
assumption is an existing table-miss flow entry that forwards
packets to the SDN controller.

1) Perform topology discovery for switches, links and hosts
2) Parse incoming IGMP packets and extract multicast

group information (join or leave multicast groups)
3) Parse the multicast packet and extract relevant informa-

tion (e.g., Datapath ID of the switch, Source Media-
Access-Control (MAC) address, Destination multicast
MAC address)

4) Generate the match for following packets (e.g., destina-
tion matching on the multicast MAC address)

5) Look-up all hosts in the multicast group of the destina-
tion MAC

6) Calculate the shortest path to all hosts in the multicast
group

7) Extract the port forwarding information for all hops in
the calculated shortest path

8) Assemble flow entries (match and actions) for each
switch in the path

9) Write the generated flows to all switches in the path
10) Send the packet back to the switch which results in the

execution of the generated flow rules (e.g., fowarding
the packet at a specific port)

The reconfiguration of the network is performed by exe-
cuting step 3) to 10) again which happens automatically if
the flows for the appropriate packet transitions are removed
from the SDN switches, e.g., when topology or multicast group
information changes.



C. SDN Controller Implementation for Direct, Shortest Path
Multicast Routing

IEC 61499 is used as reference standard for future dis-
tributed industrial automation systems. The standard provides
software reusability through the use of event-triggered function
blocks which encapsulate automation software and interoper-
ability through the use of a standardized data exchange format
that enables the execution of a program written in IEC 61499
on any IEC 61499 compliant runtime environment. The exam-
ple applications have been implemented using Eclipse 4diac

TM 2

and have been tested on 4diac Runtime Environment (FORTE),
where the hosts communicated with UDP multicast messages
via Publish and Subscribe Service Interface Function Block
(SIFB)s.

The software of the SDN controller is based on Ryu and
its topology Application Programmable Interface (API) for
topology discovery, Python’s matplotlib3 for the graphical
representation of the network and Python’s networkX library4

for the graph representation (data structure) and shortest path
algorithms.

The SDN controller consists of three components, which
are an IGMP Handler for controlling the multicast group
members, a Topology Handler that discovers the topology of
the underlying network and the Routing Application which
calculates the shortest paths and writes the appropriate flow
rules to the switches depending on network topology and
multicast group information that are provided by the other
two parts of the controller application.

Consider Figure 1 as an example network topology again. In
this case, host H1 sends a multicast packet to multicast group
G1 which contains H2 and H3. The following paragraphs
describe the implemented SDN controller application in detail
with the aid of this example.

The controller is started and connects to the SDN switches
S1, S2, S3 and S4. This OpenFlow handshake adds the
switches to the topology of the network managed by the
controller. After the connection of the switches has been
established, the controller discovers the links between the
switches by sending Link Layer Discovery Protocol (LLDP)
packets. The discovery of the receiving hosts is the next step.
When a Subscriber SIFB is initialized, it sends an IGMP join
report to the all-multicast-group-address (224.0.0.1), which is
snooped by the SDN controller through the table-miss flow
entry. The first effect of this message is that the controller
discovers the host which is done, when the first packet of
the host is received by an SDN controller and adds it to the
topology of the network. The second effect is that the SDN
controller parses the IGMP join report and adds the sender’s
MAC address to the multicast groups that are listed in the
payload of the message.

Therefore, the first messages the SDN switches receive are
IGMP join reports from H2 to S4 and H3 to S3 containing the

2http://www.eclipse.org/4diac/
3http://matplotlib.org/
4https://networkx.github.io/

information that H2 and H3 want to join the IGMP multicast
group (in this case called G1). The result of these messages
is that the sending hosts are added to the network topology
and the hosts join the multicast group with the sent MAC
address G1. The IGMP packets are dropped afterwards, as
there is no router available in the example network (scope
of the implementation limited to switched Ethernet networks)
which could be interested in the multicast group information.
The configuration phase of the SDN controller is finished,
when all the IGMP received from Subscriber SIFBs are parsed.

The first step that is performed in the operation phase of
the application is the discovery of the host that sends the
first UDP multicast packet which is host H1. The next step
is the actual packet transmission that is initiated when H1
sends the packet. The controller receives this multicast packet
(table-miss) from the first switch, calculates the shortest paths
using a Dijkstra shortest path algorithm to all Subscribers in
the network that are currently known to the SDN controller
and writes the appropriate flow entries to all switches on the
calculated paths which are S1, S4 and S3. The resulted path
is afterwards transformed into the specific flow rules for every
switch in the path. When the packet is forwarded to switch
S4 and S3, they already have a matching flow rule and can
proactively forward the received message without the need for
an additional switch-controller-communication which means
that all multicast packet forwarding is proactive except the
transmission at the very first switch S1.

Reconfiguration of the paths is performed when topology or
multicast group information of the SDN controller is updated.
This can happen in two cases. First, a host connects to the
network and is discovered by an initial IGMP packet that
is transmitted to an SDN switch. Second, a host is removed
from its belonging IGMP multicast group via an IGMP leave
report. Both cases result in the deletion of the flow rules
associated with the updated multicast group. The next time
a UDP packet is sent by a Publisher SIFB, the shortest paths
for the Subscribers in the multicast group are recalculated and
new flows are written to the SDN switches. A silent leave of
hosts is currently not supported. This can for example happen
when a host disconnects from the network without sending an
IGMP leave report.

D. Implementation Results

The result of the controller implementation is shown in
Figure 2 which is based on the output of the SDN application.
Hosts are blue circles labeled with H and SDN switches are
red circles labeled with S. The ports for a specific switch are
labeled with p. Every switch is connected to the same SDN
controller which is not shown in the figure. Datapath IDs of
switches and MAC addresses of hosts have also been annotated
after the execution of the program.

The SDN controller for the direct, shortest path routing
of UDP multicast traffic showed that the problem of packet
duplication in a network containing a ring topology is solved
like described in the section above. The arrows in Figure 2
show the shortest paths that are taken by the packets from H1

http://www.eclipse.org/4diac/
http://matplotlib.org/
https://networkx.github.io/
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TABLE I
GENERATED FLOW RULES FOR UDP MULTICAST TRAFFIC FROM H1 TO H2

AND H3

Switch MAC dst . . . Instructions

S1 G1 * Apply-Actions: Output: p3

S4 G1 * Apply-Actions: Output: p2, Output: p3

S3 G1 * Apply-Actions: Output: p2

to H2 and H3. The forwarding delay is minimized by proactive
flows for all switches except the very first (in this example S4
and S3 are proactive, S1 is reactive). For this example the
resulting flow rules are listed in Table I. The host connected
to switch S2 was not recognized by the SDN controller as
it did not send an IGMP join report for the example packet
transmission from H1 to H2 and H3.

The next section gives first insights on the performance
penalty introduced by the switch-controller-communication of
the SDN controller.

V. EVALUATING LATENCY OF SDN
SWITCH-CONTROLLER-COMMUNICATION

This section focusses on the performance penalty introduced
by the SDN switch-controller-communication. The performed
experiments are seen as a point of reference for the evaluation
of SDN in the field of industrial automation, for example
by a comparison between the delay of proactive and reactive
forwarding strategies. The scope of the experiments is reduced
to the communication between two devices, connected via
different network interfaces. This setup is expected to produce
more meaningful results for comparing reactive and proactive
forwarding strategies.

The experiments are briefly described as follows:
• Two hosts directly connected via an Ethernet cable (no

forwarding device)

• Two hosts connected via a traditional low cost COTS
desktop switch (learning switch)

• Two hosts connected via an OpenFlow enabled enhanced
learning switch which operates a completely proactive
forwarding strategy

• Two hosts connected via an OpenFlow enabled enhanced
learning switch that follows a completely reactive for-
warding strategy

The first part of this section provides detailed information
about the hardware and software, followed by the description
of the network experiments and the discussion of results.

A. Hardware and Software Configuration

This section focusses on the hardware and software that is
used for the SDN experiments and their configuration. The
following devices are used in the network experiments:

• Raspberry Pi 3 Model B V1.2 with Raspbian 8.0
• SDN switch Zodiac FX with firmware version 0.63
• low cost COTS desktop switch Edimax ES-5800G V3 (8

port, layer 2)
The Ethernet port’s bandwidth of the Raspberry Pi and

Zodiac FX are limited to maximum 100Mbps, which sets the
upper bound of the bandwidth for the experiments to 100Mbps
even if the Edimax desktop switch provides 8 1000Mbps
Ethernet ports.

The configuration of the Zodiac FX SDN switches is
straightforward. All switches communicate to the same SDN
controller (Ryu running on a Raspberry Pi). The OpenFlow
version is forced to 1.3 and the fail state of the OpenFlow
devices is set to either secure (experiment four) which
means that the switch stops sending packets if the controller
disconnects, or safe (experiment three) which means that the
switch still forwards packets in case the controller disconnects
from the device.

The software used for performing the experiments is
Ryu 4.5 as SDN controller framework and FORTE 1.8 as
IEC 61499 compliant runtime environment for industrial au-
tomation systems. Ryu’s learning switch example for Open-
Flow 1.3 is used as basis for the SDN experiments (sim-
ple switch 13.py5). The learning switch code is enhanced by
the IGMP Handler described in Section IV which parses IGMP
packets and manages the multicast groups of the network
segment the SDN switch is responsible for. Instead of the
standard layer 2 forwarding based on the destination MAC
address (flooding in case of UDP multicast on a traditional
switch), the destination multicast MAC address is looked up
in the multicast group table managed by the controller and
the packet is sent to all hosts that are registered in the specific
multicast group (messages are not flooded).

The Raspberry Pis automatically start FORTE after booting
by a start script. A boot file, containing the experiment
definition written as an IEC 61499 compliant function block
network, is loaded when FORTE starts. This approach ensured
the repeatability of the experiments. Only the experiment setup

5https://github.com/osrg/ryu/blob/master/ryu/app/simple switch 13.py

https://github.com/osrg/ryu/blob/master/ryu/app/simple_switch_13.py
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(hardware composition and network setup) are changed among
the four experiments. Any restart of the Raspberry Pis starts
an experiment from scratch with the physically configured
network setup.

A custom Function Block (FB) (StopWatch) for time
measuring is implemented. This function block uses the
C++ chrono::high_resolution_timer which can be
started and stopped by two input events and provides a data
output for the time difference between the start and stop event.
This time difference is the input for a CSV Writer FB which
records the different times and writes it to a comma-separated
value file.

The IEC 61499 compliant experiment definition is illus-
trated in Figure 3. The applications running on two devices
are simplified (e.g., all event connections responsible for the
correct initialization of the FBs are removed) in order to
decrease the complexity of the figure. Resource 1 of Device 1
contains the main part of the application. The Publisher sends
the UDP multicast messages which starts counter and timer for
the first message of a batch. Device 2 immediately answers
the message with another UDP multicast sent to Device 1.
The number of messages is counted and in case the size of
the message batches is reached the time is stopped by the
StopWatch FB. In other words, the application measures the
Round Trip Time (RTT) for UDP message batches. Resource 2
of Device 1 is responsible for counting the number of these
batches and stopping the experiment when the configured
number of repetitions is reached.

Five network experiments have been performed in order
to determine the performance of a basic software-defined
network setup. The first experiment was used to evaluate
on the measurement accuracy and the measuring method
that suite the experiments best. Therefor one Raspberry Pi
with two resources in one FORTE was used. FORTE was
transmitting the messages from one resource to the other
and back, measuring the RTTs. The smallest time that was
measured was 3µs. This time can be seen as lower bound for
the other experiments as sending a network packet within a
device is considered faster than the packet transmission via

FORTE

Raspberry Pi

FORTE

Raspberry Pi
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Raspberry Pi
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Raspberry Pi
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eth0 eth0

Fig. 4. General experiment structure

a network connection. This lower bound also changed the
measuring strategy from measuring the time of single packets
to measuring the time of multiple packets and calculating
the mean for a single packet transmission from this results.
In the following experiments the time for 130000 (10000
for the reactive learning switch experiment) UDP packets
was measured 1000 times. This ensured a high measurement
accuracy by reducing the uncertainty of the timer.

A meaningful payload size for messages in the automation
industry is 4B [13]. This payload is stuffed with zeros as
the minimal payload size of an Ethernet packet with UDP
header and without the optional header tag for 802.1Q is
18B. Hence, the message size does not influence the network
performance as long as it is smaller than 18B. The experiments
are performed with a boolean value as payload.

B. Experiment 1: Direct Cable Connection

The general composition of the experiments is depicted in
Figure 4. The Raspberry Pis are running the same application
(Figure 3) for all the experiments and only the network
infrastructure is changed which ensures the repeatability of
the experiments and the comparability of the measurment
results. The following paragraphs give an overview of the four
different experiments.

1) Composition: A sending and a responding Raspberry Pi
device is directly connected via an Ethernet cable on their
interfaces eth0. The responding device is started before the
sending device.

2) Statement: This experiment was performed to get the
fastest possible network transmission, for an estimation and
comparison of the performance of the upcoming experiments.

C. Experiment 2: Traditional Desktop Switch Connection

1) Composition: Two Raspberry Pis are connected via the
Edimax ES-5800G commercial off the shelf desktop switch.
The responding device is started before the sending device.

2) Statement: This experiment is intended as a comparison
of the traditional desktop switch against the SDN enabled
switch (proactive and reactive learning switch approach) de-
scribed in the next two sections.

D. Experiment 3: Proactive Learning Switch

1) Composition: The forwarding device is a Zodiak FX
SDN switch directly connected to an SDN controller running
on an additional Raspberry Pi. When the first packet transmis-
sion was successful, the appropriate flows are written to the
switch. The fail state of the switch is set to safe (packets
will be forwarded according to existing flows even if the
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Fig. 5. Proactive experiment results (histogram)
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Fig. 6. Reactive experiment results (histogram)

TABLE II
EXPERIMENT RESULTS

Min Max Mean Std. Deviation Median MMTest Required Sample Size
Direct cable 189,86µs 316,05µs 196,66µs 9,63µs 195,53µs 0,574% 301
COTS switch 211,13µs 344,96µs 222,45µs 12,88µs 220,25µs 0,991% 356
Proactive 447,2µs 471,55µs 463,47µs 6,72µs 467,55µs — —
Reactive 5684,8µss 6525µs 5760,75µs 28,95µs 5759,5µs 0,218% 30

SDN controller disconnects). The controller is disconnected
from the switch after the flows are written and the sending
and receiving Raspberry Pis are restarted in order to start the
experiment again with the proactive flows (flows have no time
out in this case).

2) Statement: The measurements are estimated to be simi-
lar to the results of the COTS desktop switch because the SDN
switch is now emulating a COTS switch except that it does not
flood packets but forwards them to specific ports (depending
on IGMP multicast group information).

E. Experiment 4: Reactive Learning Switch

1) Composition: The structure of this experiment does not
differ from the proactive experiment performed before. The
only difference is the controller which is programmed to
forward the packets without writing flows to the switch and
is not disconnected from the SDN switch. Every packet is
forwarded to the controller which decides the port a message
is forwarded. The controller does not write flows to the
SDN switch, but directly forwards the packet (fully reactive
forwarding). The controller’s fail state is set to secure.

As this experiment is estimated to be significantly slower
than the experiments before (switch-controller-communication
for each packet), the number of the messages for a single
sample is reduced to 10000 (instead of 130000).

2) Statement: This experiment is meant to give first insights
on the delay caused by the switch-controller-communication
and the execution time of the controller code. The results
are expected to be much higher, than the results of the
measurements before.

F. Comparison and Discussion of Results

This section focuses on the evaluation and interpretation
of the measurements. An analysis for the meaningfulness of
the experiments is given first. Therefore, the statistical best
practices for normal distributed experiment samples have been
applied:

• Samples are normal distributed if Mean-Median-Test
(MMTest) returns a value smaller than 1%

• Confidence interval and required sample size for a set of
samples are calculated

The characteristics for the experiments (except experiment
3 - proactive learning switch) show that they are normal
distributed (MMTest < 1%) and meaningful because of the
calculated required sample size, which is significantly lower
as the real number of samples. The histogram for the only
experiment that does not follow a normal distribution is shown
in Figure 5 which means that the number of required samples
could not be calculated for the proactive experiment. The
results for the reactive learning switch in Figure 6 are shown
as comparison and reference for the graphs of experiments one
and two, which showed a similar normal distributed character.

An overall comparison of all four experiments can be seen
in Table II.

The mean RTT value for a single packet can be considered
as best possibility for a performance comparison (calculated
from the overall time for transmission of one batch and the
number of packet transmissions). As expected, the direct cable
connection of two devices is the fastest possible connection
with a mean RTT of 196,66µs, directly followed by the COTS
switch a mean RTT of 222,45µs. This also shows the perfor-



mance of the hardware based COTS switch which is highly
optimized for less complex tasks and layer 2 forwarding. The
COTS switch also does not forward packets to a specific port,
but floods them in case of multicast packets. This can be
considered as a reason for the performance difference between
the COTS switch and the proactive switching experiment,
where the OpenFlow switch emulated the functionality of a
COTS switch, but with additional forwarding decision making
knowledge. The second reason why the OpenFlow switch is
significant slower than the COTS switch is that the Zodiak
FX SDN switch is software based instead of hardware based.
This increases the RTT in the performed experiments by a
factor of around 2 from 222,45µs (COTS switch experiment)
to 463,47µs (proactive experiment).

However the most interesting part of the comparison of
measurement results is the difference between proactive and
reactive packet forwarding. The delay caused by the switch-
controller-communication and the execution time of the con-
troller’s algorithm is a factor of around 12,5, from 463,47µs
(proactive experiment) to 5760,75µs (reactive experiment).

A more complex routing strategy than the learning switch
approach used in the experiments like for example the shortest
path direct routing of UDP multicast traffic (Section IV) would
also increase the RTT. This emphasizes the need for proactive
instead of reactive forwarding strategies in software-defined
networks which is also shown by the 4 times higher standard
deviation of reactive forwarding compared to the proactive
strategy. The complexity of the implemented controller has
a great impact on the delay and the determinism of the
communication.

VI. CONCLUSION

This work showed how the concept of SDN can be adopted
to the field of industrial automation. Therefore, an SDN
controller was implemented for the direct routing of UDP
multicast traffic in a ring topology. The controller follows a
mainly proactive forwarding approach, calculates the shortest
paths for all members of the appropriate multicast groups
and writes the specific flows to the SDN switches. Four
network experiments were performed in order to give first
insights into the performance penalty of the switch-controller-
communication. These experiments resulted in a 12,5 times
higher delay for a reactive forwarding compared to proactive
forwarding on the Zodiac FX OpenFlow-enabled switch. In
addition, the standard deviation for reactive forwarding is 4
times higher than the proactive standard deviation. Hence, a
mainly proactive approach needs to be chosen for deterministic
communication in the field of industrial automation.

Future work can be dedicated to the enhancement of the
concept, for example by implementing a prototype for load
balancing in industrial networks or the implementation of an
SDN controller that is able to communicate with a commu-
nication coordination layer extension of embedded devices as
proposed by Schimmel et al. [13] or by reducing the reconfigu-
ration overhead of the implemented SDN controller. Rerunning
the experiments described in Section V on productive SDN

hardware may yield different results for the performance of
network latencies.

Another promising approach for the industrial networks of
the future is the new TSN standard which aims at provid-
ing real-time capabilities to standard Ethernet networks. The
combination of SDN and TSN needs to be evaluated in the
future in order to better understand the synergies between
SDN (flexibility and reconfiguration) and TSN (performance
and real-time).
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