Plug and Produce for Industry 4.0 using
Software-defined Networking and OPC UA

Basavaraj Madiwalar, Ben Schneider, Stefan Profanter

Abstract—The manufacturers are in quest for flexible and
agile production facilities capable of accommodating changes to
product specification. The need for flexible production facilities is
stemming from the desire for customized products and fluctuating
market trends. Industry 4.0 impels for adaptable manufac-
turing plants by employing intelligent devices and advanced
communication technologies. The complexity of the configuration
process determines the adaptability of production facilities to
accommodate changes to the production process.

We propose a systematic integration process and multi-level
production system using Software-defined Networking (SDN) and
OPC Unified Architecture (OPC UA) to reduce the configuration
complexity to a Plug and Produce level. OPC UA, as a service-
oriented middleware, provides the tool-set for semantic modeling
and automatic device discovery. However, due to the multicast
nature of the OPC UA discovery mechanism, the existing ap-
proaches require intelligence at the device level to select the
desired device to connect to. In contrast, our proposed solution
shifts the intelligence to a centralized SDN controller to route
multicast traffic to facilitate device discovery. The combination of
an SDN controller and OPC UA discovery enables the integration
of new devices by adding more intelligence to the device discovery.

I. INTRODUCTION

The increasing demand for customized products and shorter
product life cycles is shifting the focus of the manufacturing
process from mass production towards mass customization [1].
The manufacturing facilities should be adaptable to accommo-
date changes to the product specification. Therefore, the search
for ideas to create flexible manufacturing facilities is gathering
greater interest.

The flexibility aspect of a manufacturing system largely
depends on the configuration effort needed to commission
and restructure the production facility. The current produc-
tion facilities employ proprietary automation technologies and
communication protocols optimized for high performance with
a narrow area of applications. As a consequence, the current
highly automated production facilities deemed inflexible due
to high configuration effort required to set up the production
facility. In a flexible manufacturing facility, the integration
of new devices shall be comparable to hot-plugin of USB
devices to a PC system. To achieve such a level of Plug
and Produce, the system should detect the newly plugged
device and configure it to perform the production task. The
existing research work provides solutions for automated device
discovery or device configuration [1, 2]. However, they don’t
offer a common solution for both the device discovery and

B. Madiwalar is with Technische Universitdt Miinchen, Munich, Germany

B. Schneider, S. Profanter are with fortiss, An-Institut Technische Uni-
versitidt Miinchen, Munich, Germany. Correspondance should be directed to
basavaraj.madiwalar@tum.de

configuration process. In this work, we make use of open-
source communication technologies such as Software-defined
Networking (SDN) and Open Platform Communications Uni-
fied Architecture (OPC UA) to define a multi-level Plug and
Produce system which detects and configures new devices.

The proposed multi-level Plug and Produce system utilizes
the SDN flow programmability and the device discovery
features of OPC UA to reduce the configuration effort. In
our proposed solution, the process of integrating new devices
is split into two phases: Discovery and Configuration. In the
Discovery phase, a new device discovers and registers with
its control entity to receive control parameters. OPC UA
facilitates the Discovery phase by defining the local discovery
servers utilizing multicast DNS (mDNS) and DNS Service
Discovery (DNS-SD) protocols. The combination of mDNS
and DNS-SD is primarily used in the enterprise environment
for automatic device discovery. Even though mDNS offers
automated device discovery, we showed in our previous work
that selecting the correct controlling device requires pre-
configured information [3]. The pre-configuration requirement
defeats the purpose of Plug and Produce systems.

As a solution, we propose to make use of the SDN controller
as an intelligent network control device to filter and forward
mDNS messages from the correct control device. In the
configuration stage, the registered device is configured with
the help of higher level manufacturing services, to perform
the production task. Thereby, both SDN and OPC UA reduces
the configuration effort to the Plug and Produce level. Apart
from the reduced configuration effort, the SDN controller also
helps to reduce the mDNS multicast traffic in the network.
Further, the SDN can help to realize the deterministic Ethernet
networks[4].

II. BACKGROUND

A. Software-defined Networking and OpenFlow

The data packet forwarding functionality of network devices
is split into functional planes termed as: the control plane and
data plane. The control plane determines the forwarding be-
havior of data packets traversing through the network device.
The data plane performs simple data packet forwarding tasks
based on the instructions provided by the control plane. In non-
SDN networking, each device in the network owns a dedicated
control plane and data plane. As a result, the forwarding
and traffic shaping behavior is determined by the device
control plane using complex distributed routing protocols. As
a consequence of the distributed control plane, the global

configuration and management of the network device is more
challenging.

SDN separates the device control and data plane by mi-
grating the control plane to a centralized network control
device: an SDN controller. Additionally, it uses open-standard
interfaces for communication between the centralized con-
trol plane and data plane. The OpenFlow protocol is one
such open-standard interface, which enables programming of
network device forwarding information [5]. Thereby SDN
and OpenFlow facilitate the programmability of the device
forwarding behavior and enable a higher flexibility in network
configuration in contrast to non-SDN networks.

OpenFlow implements the packet processing pipeline in
network devices using a series of flow tables and group
tables. The flow table holds the flow rules to represent packet
header matching constraints. The group table can be used
to implement complex forwarding behavior such as multicast
forwarding. Additionally, it defines messages which the SDN
controller can use to add, delete, or modify flow rules and
group constructs.

B. OPC UA - Middleware for Industrial loT

OPC UA is a standardized communication middleware pro-
viding semantic modeling features for its information model.
Since the wire protocol of OPC UA is standardized, our
proposed combination with SDN can be used independent
of the used OPC UA stack. One strength of OPC UA is its
semantically described information model which can be used
to provide additional information to connected clients. Besides
of the protocol and information model, OPC UA also defines
two discovery services to discover other OPC UA instances in
the network: Local Discovery Services (LDS) are used to find
instances in the same subnet, while Global Discovery Services
(GDS) can be used across different subnets.

In this paper we focus on LDS and combine it with SDN
features to enable Plug and Produce systems. An extension
of LDS is LDS with Multicast Extension (LDS-ME): it uses
mDNS broadcast messages carrying DNS-SD information to
identify OPC UA instances. These broadcast messages are sent
through the whole network, such that every OPC UA LDS-ME
will receive this information. This allows adding new OPC UA
devices to the network without pre-configuring the OPC UA
counterparts. A more detailed explanation of LDS-ME can be
found in [3].

The mDNS message broadcast leads to some issues: first of
all, the network is flooded by broadcast messages for any new
OPC UA device which is added to the system. Secondly, if
there are multiple OPC UA devices in the network, the newly
plugged device needs to have some built-in logic to decide to
which control device it needs to register. This control device
may vary, depending on the factory setup.

Therefore an intelligent network is required which automat-
ically routes the mDNS packets to the correct control devices,
and therefore shifts the logic from the device level to a more
centralized component. In our proposed system this centralized

component is the SDN controller which is connected to the
manufacturing service bus or other higher-level components.

III. RELATED WORK

The need to transform flexible manufacturing facilities in
order to cope with changing customer demands was recom-
mended around 20 years back. There are several attempts
being made to improve the flexibility of the production facility
utilizing auto-configuration methods.

Durkop et al. [6] proposes an auto-configuration process for
Real-Time Ethernet(RTE) system using OPC UA. The auto-
configuration process is split into discovery and configuration.
When a device is plugged in, the OPC UA server on the
device registers with an OPC UA discovery server on the 10
controller device. The IP address of the discovery server is
distributed using the options field in Dynamic Host Control
Protocol (DHCP) messages. However, the work doesn’t make
use of OPC UA discovery process as the OPC UA discovery
services were published later in the year 2015. Moreover, it
is not evident how the DHCP server is able to map the new
devices if there are multiple IO controllers.

The Device Profile for Web Services (DPWS) another
middle-ware technology discussed alongside OPC UA. Au-
thors in [2] uses DPWS to automate the integration of field
devices. Similar to OPC UA, it supports the client-server
architecture and web-based discovery services. The client can
make use of Web Service technologies to execute services on
the servers. DPWS uses service description file to describe
the service information of a server application. The major
limitation of using DPWS is that a client application needs
to posses the server service description file.

Henneke et al. [8] extend the OPC UA device discovery
process with SDN and Network Function Virtualization. The
authors focus on limitations of OPC UA local discovery
services in networks with multiple subnets (i.e., OPC UA
GDS). The solution offers network-wide discovery services
by utilizing an SDN controller and OPC UA GDS as a Virtual
Network Function (VNF). The solution reduces multicast
traffic and enables the discovery of OPC UA server instances
across the network.

IV. FUNCTIONAL REQUIREMENTS OF PLUG AND PRODUCE
SYSTEMS

A flexible manufacturing facility should support the follow-
ing functional requirements for the realization of a Plug and
Produce system:

« Skill as a Service: A device in a flexible manufacturing
facility should offer its skill as a service for other devices.
Besides, devices should provide self-description of their
capabilities [9].

o Automatic Device Discovery: A device should be able
to discover other devices in the system and their services
without any network specific pre-configuration.

o Standard Communication Protocol: The devices should
communicate using standardized communication proto-

cols for interoperability with devices from different ven-
dors [10].

o Flexible Network Infrastructure: The network infras-
tructure should be flexible and dynamically configurable.
It should accommodate new devices or topology changes
without the need to configure network devices manually.

OPC UA satisfies the first three requirements. Using an OPC
UA server application and its address space one can model the
functionality and data associated with different components
in an industrial automation system. Additionally, OPC UA
supports the standard Ethernet Protocol as recommended by
the Reference Architecture Model for Industry 4.0 [10]. The
use of standard Ethernet across the layers of manufacturing
facility eliminates the need to deploy and configure multiple
communication protocols.

SDN promotes programmable networks and hence caters
for the requirement of flexible and dynamically configurable
networks. The SDN controller with a consolidated view of the
network topology enables the identification of the automation
device network location. Therefore, we combine OPC UA
and SDN in our proposed solution, in order to fulfil all the
requirements mentioned above. Here the role of the SDN con-
troller is not limited to configuring flow rules. It is used as the
intelligent network control device to supervise the automated
device discovery process. The subsection V-B provides more
specific details about the role of the SDN controller in our
setup.

The subsequent sections describe the components of the
proposed Plug and Produce system consisting of OPC UA
client-server applications and the SDN network infrastructure.
Additionally, the implementation details of the device discov-
ery and configuration process are discussed.

V. DESIGN OF A PLUG AND PRODUCE SYSTEM

This section is split into two parts covering the details of
components providing the production functionality and the
SDN infrastructure interconnecting components. Subsections
further describe the role of each one of these components in
the device discovery and configuration process.

A. Components of a Plug and Produce System

In this work, we model the production process by utilizing
the concept of hierarchical OPC UA servers described in our
previous work [3]. The hierarchy of OPC UA servers helps to
divide the complex production process into sub-tasks. Fig. 1
shows a model of the proposed Plug and Produce system
with a hierarchy OPC UA servers. The hierarchy of OPC UA
servers helps to abstract the capabilities of devices to higher
level control components.

The workstation in Fig. 1 implements a subtask utilizing a
set of devices offering specific functionality. The coordinator
on the workstation controls the devices on the workstation by
implementing the execution logic of the subtask. To detect
devices on the workstation, the coordinator uses an instance
of an OPC UA LDS-ME server. A device on the workstation
models the functionality of field devices such as a sensor or a

Manufacturing Service Bus
“#PC UA
LDS-ME Server

SDN - Ethernet
Switching —>|
Infrastructure

Filling Station Robot Station
Workstation - 1 Workstation - 2
Coordinator - 1 Coordinator - 2
“#OPC UA “#OPC UA
LDS-ME Server LDS-ME Server
| : | | | |
Server Server Server Server
Device 1.1 Device 1.2 Device 2.1 Device 2.2
(Filler) (Conveyor) (Sensor) (Gripper)

Fig. 1. Components of the proposed Plug and Produce system. The Manufac-
turing Services Bus configures the coordinator components on workstation.
The coordinator component orchestrates devices on the workstation.

conveyor. The device uses an OPC UA server to implement the
functionality of a field device. When a device is plugged in, it
discovers and registers with the coordinator on the workstation
by implementing a subset of mDNS responder services.

The Manufacturing Service Bus (MSB) is responsible for
detecting and configuring coordinators on workstations. It
acts as a centralized communication component and provides
the requesting coordinator with the information about other
available coordinators. The MSB uses an instance of an LDS-
ME server and listens for mDNS announcements from LDS-
ME servers on coordinators.

B. Software-defined Networking Infrastructure

Fig. 2 depicts the proposed network infrastructure for the
Plug and Produce system consisting of the SDN controller and
OpenFlow switches. The SDN controller with the help of the
network controller services configures the OpenFlow switches
to handle data-traffic between devices, coordinators, and the
MSB.

Additional to the general flow rule configuration, the SDN
controller supervises the device discovery process. In the OPC
UA multicast based discovery process, devices with an OPC
UA server announce their services using mDNS multicast
announcement messages. A device receiving an announcement
message, responds with its implemented services using an
mDNS multicast response message. Lets assume, that we use
non-SDN Ethernet switches instead of OpenFlow switches.
The non-SDN switches flood mDNS multicast packets to all
the ports except the ingress port. As a result, all devices and
coordinators in the subnet receive the mDNS announcement
and respond to it. Therefore, the state of the art approach
proposes to pre-configure new devices with the designated
coordinator information, in order to filter the received mDNS
responses [3]. However, in this work, we eliminate the need
for such pre-configuration by using an SDN controller and
programmable OpenFlow switches. The SDN controller stores
and forwards mDNS responses only from correct coordinator
to newly plugged-in devices.

The SDN controller uses the skill information of a plugged-
in device, the network topology information, and the automa-

SDN Controller

Host Topology
Manager Manager

OPC UA
Client

mDNS Packet
Handler

L2_Switch

OpenFlow
Traffic

<«—> Data Traffic

Workstation 1 Workstation 2

OpenFlow:1 4" - " OpenFlow:2
Manufacturing

Service Bus

‘Device 2.1 ‘ ‘Device 2.2 ‘

Coordinator 1

‘ Device 1.1 ‘ ‘Devicei.z ‘
Filler

Sensor

Conveyor Gripper

Fig. 2. SDN Infrastructure for Plug and Produce System.

tion process plan to identify the correct coordinator response
messages. It uses an OPC UA client instance to obtain the
new device skill information. We propose to use a dedicated
OpenFlow switch per workstation. Using a dedicated switch,
helps the SDN controller to identify the physical location
of devices and to distinguish devices with similar skills on
different workstations. Additionally, the SDN controller uses
of the topology manager service to gather the switch ID for the
devices. It then compares the device switch ID with the switch
ID and workstation map to determine the physical location of
the newly plugged device. An example of a switch ID and
workstation map is shown in Table 1.

An administrator is responsible to provide the SDN con-
troller with an automation plan. The automation plan is a
simple map of the workstation and skills provided by devices
on the same workstation. An example of a workstation and
skill map is shown in Table II. Using the combination of
skill information, topology information and automation plan,
the SDN controller identifies the coordinator for the newly
plugged-in devices. Thereby, the SDN controller eliminates
the need to pre-configure devices with their control entity
information. The combination of OPC UA discovery services
and the centralized SDN controller’s ability to direct the
mDNS multicast traffic helps new devices to discover and
register with their control entities.

We make use of the OpenDaylight SDN controller frame-
work to implement the network control services. These net-
work control services provide mechanisms to configure Open-
Flow flow-rules and process mDNS multicast announcements.
The next section provides the step-by-step details of the device
discovery and configuration process using the SDN controller
and OPC UA LDS-ME.

VI. DEVICE DISCOVERY AND CONFIGURATION

In our proposed Plug and Produce system, the process of
integrating new devices is split into device discovery and con-
figuration stages. In the discovery phase, the new device use
the mDNS responder services to announce its addition to the
network. The SDN controller uses the announcement messages

TABLE I
MAP OF SWITCH ID AND WORKSTATION.

Switch-ID | Workstation-ID
OpenFlow-1 | Workstation-1
OpenFlow-2 | Workstation-2

TABLE II

MAP OF WORKSTATION AND SKILL SET.

Skill Set
Conveyor, Filler
Sensor, Gripper

Workstation-ID
Workstation-1
Workstation-2

to detect new devices and helps them to find and register with
their desired control component. In the configuration stage,
the control component configures the registered device with its
control parameters. In our proposed approach, the discovery
phase is nontrivial as compared to configuration stage. The
combination of the SDN controller and OPC UA discovery
servers facilitate the discovery phase. The next subsections
describe the details of the steps involved in the discovery and
configuration of new devices.

A. Device Discovery

The subsection provides details about the messages ex-
changed between the devices with OPC UA servers and the
SDN controller during the discovery phase. Figure 3 depicts
the order of messages exchanged between the SDN controller
and devices implementing specific skills. As a first step, the
SDN controller and OpenFlow switches are powered on. In
addition, the OpenFlow switch on all the workstations are
configured to forward the unmatched mDNS packets to the
SDN controller. The details of messages exchanged between
the coordinator, devices, and the SDN controller are as follows:

1) The Coordinator device is powered-on before powering
any other devices on the workstation. The LDS-ME
server on the coordinator sends mDNS announcement
messages with Resource Records (RRs) of the OPC
UA server. The OpenFlow switch forwards the an-
nouncement messages to the SDN controller for further
processing. The mDNS packet handler module in the
SDN controller collects the discoveryURL information
from the RRs and passes it to the OPC UA client
module.

2) The OPC UA client performs an OPC UA read request
for the skill information using the provided discov-
eryURL. The SDN controller uses OpenFlow PacketOut
messages to instruct the OpenFlow switch to forward
packets via the port connecting the newly plugged
Coordinator device.

3) The OPC UA server on the coordinator returns responds
with the skill information. The SDN controller decides
the next processing steps based on the collected skill

SDN OpenFlow a
Controller Switch et
Parse mDNS
packes for | OF Packet-In ; MDNS Packets
DiscoveryURL : (mDNS Packets) '
and store the |
packets g‘
oPC ! OF Packet-Out 8
(Skill Read Request) Skill Read Request

UAClient

Skill Read Response

) ‘ OF Packet-In ‘4
Refer to Figure 5 (Skill Read Response)

Parse mDNS OF Packet-In :4

L Device -
Packets for :=(mDNS Packets) Sensor
DiscoveryURL |
OPC OF Packet-Out Skill Read Request
(Skill Read Request)

UAClient

§ Skill Read Response
Refer to Figure 5 (Skill Read Response)

: OF Packet-In B

' Flow Modification '
! (Create OF Group) .

Send Identified | OF Packet-Out 5. Coordinator mDNS Packets !
Coordinator pkts i (Coordinator mDNS Packets) ™ 4

Registers with the :
Coordinator device !

Fig. 3. Sequence of messages exchanged with the SDN controller when a
device joins the network.

information. Figure 4 shows the flow-chart of the SDN
controller’s skill processing method.

4) In the next step, the device offering specific skill (or
functionality) is powered-on. The OPC UA server on
these devices sends mDNS packets with the RRs of the
OPC UA server implementing the skill. The OpenFlow
switch forwards these mDNS packets to the SDN con-
troller for further processing.

5) Similar to point 2, the SDN controller parses the mDNS
packets for the discoveryURL of the OPC UA server
and uses the OPC UA client module to perform a read
request for the skill information.

6) the OPC UA server on the device responds with the skill
information. Figure 4 shows how the SDN controller
processes the obtained skill information.

7) Upon identification of the correct coordinator device,
the SDN controller forwards the buffered coordinator
mDNS packets (point 2) to the newly plugged-in device.
Additionally, the SDN controller configures the Open-
Flow group and OpenFlow flow-rule to implement the
multicast group consisting of coordinator and devices
assigned to the mapped coordinator.

8) The OPC UA server uses the information from the re-
ceived mDNS packets and registers with the coordinator.

B. Device Configuration

We use the device configuration process defined in [1].
Figure 5 shows an example of the new device configuration
process after the successful registration with a coordinator. The
gripper object is discovered and registers with its designated

@C UA cl@

Skill

io akill = No o Get workstation
colosrtsii'ﬂ!n;ﬂ G?_::S\':':;gr:g;;?m —> corresponding to
Z switch-id from Table |
Get switch-id from Check if skill T
workstation in ___input
table | T
Get workstation for the
switch-id from table I.
Get coordinator
mapped to
i workstation(#)
(#)Store map of ¢
workstation to
coordinator Forward identified

coordinator packets
to the discovered
device

Fig. 4. The flow diagram of an SDN controller’s device skill processing
method.

Tasrggm es| Toarnan? i Regist
egister -
g Sl Map Coordinator 2 o VO data
i e Device: Gripper
I i'| [Devices: Skill (OFC UA server) /”
. Control Logic | Map] Device
: Parameter | Parameters

Fig. 5. An example device configuration process for a plugged-in gripper.

coordinator device as described in the previous subsection.
The OPC UA server on the coordinator spawns an OPC UA
client instance to gather the registered device skill information.
Further, the coordinator device informs the MSB with a list
of registered devices along with their skill information. The
MSB contains the coordinator device control logic parameters
and execution order in the form of task recipes. The task
recipes represent the machine configuration derived from the
product specification. The OPC UA server on the coordinator
reuses the already created client instance to configure control
parameters of the registered devices.

VII. EVALUATION

The previous sections present the Plug and Produce system
details and a systematic approach to discover and configure
new devices using SDN and OPC UA. The reduced configura-
tion effort improves the flexibility of manufacturing facilities.
The flexibility of a system is a qualitative parameter and its
interpretation depends on the system under question. Therefore
in this section, we first define the flexibility aspects of the
proposed Plug and Produce system and compare the proposed
SDN based Plug and Produce system against the non-SDN
based approach specified in [3].

A. Flexibility Aspect of a Plug and Produce System

The integration of SDN and OPC UA is inevitable as OPC
UA alone is not sufficient to achieve Plug and Produce [3]. Our
previous work with OPC UA and non-SDN network infrastruc-
ture showed that devices require pre-configured information
to select the correct control entity [3]. The ability of the

SDN controller to store and forward mDNS multicast packets
eliminates the need for this kind of pre-configuration. Hence,
the SDN infrastructure plays a greater role in comparison to
OPC UA to improve the system flexibility. Therefore, we use
[11] as a reference to draw the definition of flexibility for our
proposed Plug and Produce system. The definition of flexibility
varies depending on which component of the network as a
system improves system’s flexibility. For example, flexibility
can be represented by the scalability of the network, the
ability to react to topology changes and the ease of network
configuration. In our proposed Plug and Produce system the
term flexibility refers to the ease of adding new devices to the
system with minimum or no configuration effort and without
affecting the process under control. It is hard to quantita-
tively compare two systems using flexibility as a parameter.
Therefore, we have considered alternative parameters for a
comparison and discuss them in the next subsection.

B. Comparison of Parameters

The literature survey suggests that the cost incurred to
improve the flexibility of a system can be a parameter for
comparing the network design choices [11]. Therefore, we are
considering a system cost parameter, that is common for both
the SDN and non-SDN based Plug and Produce system.

The mDNS protocol as a distributed name resolution proto-
col uses cache maintenance strategy. As a result, the mDNS re-
sponder service should flush discovered services whenever the
state of the system or network interface changes. Therefore,
devices using OPC UA discovery services have to rediscover
and register with its control entity. In production systems
with distributed control systems the unavailability of a part
of the system could hamper the production quality. Moreover,
a flexible system should handle changes to the system state in
a timely manner. Therefore, we choose the time to register as
the cost parameter for the comparison and, its definition is as
below.

Time to Register: The time required for a device to
rediscover and register with its control entity.

The use of an SDN controller to facilitate the device
discovery by controlling the flow of mDNS traffic creates
several additional benefits. The non-SDN approach forces
devices to process a large number of mDNS multicast packets
(i.e., through the flooding of multicast packets). Moreover,
the field devices are embedded devices with limited resource
capacity and network interfaces with limited buffer size. The
large multicast traffic can affect the timely processing of time
critical control packets. However, due to unavailability of real
embedded devices and limitations of virtual network emulator,
we could not evaluate the effect of mDNS traffic on limited
buffer-size and packet processing delay on real hardware. As
an alternative, we are comparing the number of multicast
packets received by devices in our proposed SDN based Plug
and Produce system against the non-SDN approach.

mDNS multicast packet count: The number of mDNS
multicast packets received by devices with OPC UA servers
in the SDN and non-SDN based Plug and Produce system.

The testbed setup and measurement process for both the
Time to Register and mDNS multicast packet count experi-
ments are largely similar. Therefore, the we provide a common
description for the testbed and measurement process.

C. Testbed Setup and Measurement Process

The subsection provides details about the testbed used for
the measurement of time to register and mDNS multicast
packet count parameters. We use Containernet as the network
emulator to create a virtual network infrastructure with Open-
Vswitches [12]. We use Containernet’s Python APIs to create
the virtual network topology and run OPC UA client-server
applications. Additionally, we use Pyshark2 Python libraries
to count mDNS multicast packets on each host interface.

Figure. 6 shows the sample virtual network topology used
for the measurement of the time to register and mDNS multi-
cast packet count experiments. The network topology consists
of OpenVswitches connected in a linear fashion to verify the
SDN controller’s ability to limit the multicast traffic to devices
on the same workstation. The same network topology with
OpenVswitches configured to operate in normal-mode for the
measurement of non-SDN based approach. Each workstation
contains three devices with an OPC UA server modeling
the skill of real-world objects and a coordinator with an
LDS-ME server. All workstations contain devices with the
same set of skills to demonstrate the SDN controller’s ability
to distinguish devices with same skills on the basis of the
topology information. The SDN controller and virtual network
topology run on two different test PCs. Both test PCs equipped
with Intel i7 processors@3.70GHz, 8GB of RAM running
Ubuntu 16.08. The test PCs are connected via a 100Mbps
Ethernet network interfaces.

The measurement process is automated by a Python script
and begins by starting the SDN controller and configuring
the SDN controller with the automation plan as shown in
Table I and II. Next, we create a virtual network for the given
number of devices. The OPC UA server and LDS-ME server
applications are mapped to the Docker Containers acting as
devices and coordinators. Using the Python APIs, the OPC
UA server applications on coordinator and devices are started.
The OPC UA server applications are designed to log the time
after a successful registration with the respective coordinator
devices. The registration process is repeated for 100 iterations
to ensure that statistics of the sample can reliably represent the
population parameters such as mean and standard deviation.
The measurement process for the non-SDN based approach is
largely similar to SDN based approach. The OpenVswitch are
configured to operate in learning switch mode and the OPC
UA server applications is started by providing the hostname
of the coordinator device as the argument.

D. Discussion of Measurement Results

This subsection provides the quantitative comparison of the
Time to Register and mDNS multicast packet count values for
the SDN based and non-SDN based experiments.

S —

e B il

¥ ¥,

Containernet

WarkStation -2 ",

OpenFIow:ZE

SN

[coordinate] [Gripper | [sensor |

Work Station - 1 ¥ OpenFlow:1

‘Ennrdmatnr{ ‘ Filler | |Cﬁnvayar‘

Fig. 6. Example network toplogy for the measurement of Time to Register
and mDNS multicast packet count. The network topology shown here contains
only 8 devices. However, for the measurement we extend the network topology
with up-to 48 OPC UA servers by adding more workstation units.

1) Time to Register: Fig. 7 compares the mean time to
register value for a device in the SDN based approach against
the non-SDN based approach. The X axis shows the number of
OPC UA servers joining the network at the same time and Y
axis depicts the time to register values in seconds. Fig. 7 shows
that the average time to register values for both the approaches
increases when more OPC UA servers joins the network at
the same time. The time to register for SDN based approach
increases approximately by 76ms for an additional eight OPC
UA servers joining the network. Similarly, the time to register
values for non-SDN based approach increases by 80ms for
an additional eight OPC UA servers joining the network at
the same time. A device in the SDN based approach requires
approximately one second more than a device in the non-SDN
based approach to discover and register with the control entity.

Different components in both the approaches contribute to
the increasing time to register. A device with an OPC UA
server sends out nine mDNS multicast packets when it joins
the network. As a result, the SDN controller has to process
twice the number of mDNS packets for every additional
OPC UA server in the network. In the case of non-SDN
approach, every device in the network needs to process double
the amount of mDNS multicast packets when an additional
OPC UA server joins the network. Furthermore, the OPC
UA server applications are single threaded applications. As a
result, the time to register values increases for both approaches.
Moreover, the SDN controller needs to query devices for their
skill information. All these factors contribute to the higher
time to register values for the SDN case. We conclude that
it is necessary to store the discovered service information for
use across reboots in order to reduce the time to register for
the SDN approach and that the network should offer a high
degree of availability.

2) mDNS Multicast Packet Count: The subsection com-
pares the number of mDNS multicast packets received by
devices in the SDN and non-SDN approach. Figure 8 compares
the average number of mDNS multicast packets received by
devices in both approaches. The Y-axis shows the mDNS
multicast packet count and the X-axis shows the number of

2.0

¢ ¢ SDN Approach

18ll®® non-SDN Approach }]
Y 16l E I |
c
=] L}
o
8.l) 4
g
0
g 12}
o
S
L2
g 10f 1
¢t
C
©
g 0.8 E

) [
0.6 -
0.4 I I L I L I
8 16 24 32 40 48

Number of OPC UA Servers

Fig. 7. The plot compares the time to register values for devices in the
SDN based Plug and Produce system against non-SDN based approach The
measurement performed by adding different of OPC UA servers to the network
at the same time.

OPC UA servers in the network. A device in the non-SDN
approach needs to process approximately 140 more mDNS
multicast packets for every additional 8 OPC UA servers in the
network. Whereas, a device in the SDN based approach pro-
cesses an average of 48 mDNS multicast packets in networks
with a different number of OPC UA servers. Moreover in the
SDN case, the number of mDNS multicast packets received,
depends only on the number of OPC UA servers on the same
workstation. Therefore, the mDNS multicast packet count for
the SDN based approach remains constant as we add new
workstations to increase the number of OPC UA servers.

From the above discussion, it is evident that when new
workstations are added to the network, the devices in the
non-SDN based approach need to process a constantly rising
number of mDNS multicast packets. This can heavily affect
the industrial communication system in production, as such
systems often require deterministic End-2-End (E2E) delay
bounds which are influenced by the mDNS configuration
traffic. It is important to note that OPC UA server appli-
cations are single threaded applications and processes call
from network stack in sequential order. Therefore, the large
mDNS multicast traffic increases the load on the OPC UA
server. As a consequence, it can lead to non-deterministic E2E
delays. Therefore, we conclude that the SDN based approach
handles mDNS multicast traffic at a constant rate even with
an increasing amount of joining OPC UA servers, whereas the
mDNS packet count constantly increases for a rising number
of joining OPC UA servers for the non-SDN approach.

VIII. CONCLUSION AND FUTURE WORK

Our work demonstrates that it is possible to create a
Plug and Produce manufacturing system by leveraging the
capabilities of SDN and OPC UA. The SDN controller requires
device skill information and an automation-plan to determine
the control entity for new devices. It doesn’t need any device

1000

Il SDN Approach
mmm non-SDN Appreach T
1
v B0Of--- - - - - - - ‘ 1
]
L i L
[}
©
£ g
o -
8 600} i
= _ L
)
Z *
£ 400
kel
3 t
£
=]
= 200 -
+
e = = = = -
0 . L L . . .
8 16 24 32 40 48

Number of OPC UA servers

Fig. 8. The plot compares the distribution of number of mDNS packets
received by a device in SDN based Plug and Produce system against the
non-SDN based approach.

specific data like MAC addresses or hostnames. As a result,
even if we replace a defective device with a new device, the
SDN controller can still help new device to discover its control
entity. Our evaluation showed that the proposed SDN-based
approach is scalable in terms of transmitted multicast packets
on the network when more OPC UA servers are added to the
system. Additionally, the SDN controller’s ability to commu-
nicate with OPC UA servers in the network, can create more
interesting use-cases in machine to machine communication.
The use of platform-independent OPC UA as a middle-ware,
enables communication across layers of the manufacturing
facility and among devices from multiple vendors. The support
of standard Ethernet by SDN and OPC UA helps to replace
vendor-specific field-bus protocols. Thereby, the combination
of OPC UA and SDN serves to improve the interoperability
and reduces the overall system cost.

The proposed SDN controller logic to determine control
devices requires further work to cater for more complex au-
tomation scenarios. The MSB application can act as the SDN
controller northbound application and make use of semantic
reasoning to solve more complex use cases. We further plan to
investigate how SDN and OPC UA functions in heterogeneous
communication networks.

ACKNOWLEDGMENT

We like to thank Amaury Van Bemten for providing sugges-
tions for the integration of the OpenDaylight SDN controller
and OPC UA client application.

REFERENCES

[1] K. Dorofeev, C.-H. Cheng, M. Guedes, P. Ferreira,
S. Profanter, and A. Zoitl, “Device adapter concept to-
wards enabling plug&produce production environments,”
in Proceedings of the IEEE International Conference on

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

Emerging Technologies and Factory Automation (ETFA).
IEEE, 2017.

S. Hodek and J. Schlick, “Ad hoc field device integration
using device profiles, concepts for automated configu-
ration and web service technologies: Plug&play field
device integration concepts for industrial production pro-
cesses,” in International Multi-Conference on Systems,
Signals & Devices, 2012.

S. Profanter, K. Dorofeev, A. Zoitl, and A. Knoll, “OPC
UA for plug & produce: Automatic device discovery
using LDS-ME,” in Proceedings of the IEEE Interna-
tional Conference on Emerging Technologies and Factory
Automation (ETFA), 2017.

S. B. H. Said, Q. H. Truong, and M. Boc, “Sdn-based
configuration solution for ieee 802.1 time sensitive net-
working (tsn),” ACM SIGBED Review, vol. 16, no. 1, pp.
27-32, 2019.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
flow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69-74, 2008.

L. Diirkop, J. Imtiaz, H. Trsek, L. Wisniewski, and
J. Jasperneite, “Using opc-ua for the autoconfiguration
of real-time ethernet systems,” in 2013 [1th IEEE Inter-
national Conference on Industrial Informatics (INDIN).
IEEE, 2013, pp. 248-253.

L. Dirkop, J. Imtiaz, H. Trsek, and J. Jasperneite,
“Service-oriented architecture for the autoconfiguration
of real-time ethernet systems,” in 3rd Annual Colloquium
Communication in Automation (KommA), 2012.

D. Henneke, A. Brozmann, L. Wisniewski, and
J. Jasperneite, “Leveraging opc-ua discovery by software-
defined networking and network function virtualization,”
in 2018 14th IEEE International Workshop on Factory
Communication Systems (WFCS). 1EEE, 2018, pp. 1-4.
D. C. M. Hartmut Rauen, “Industrie 4.0 communication
guideline based on opc ua,” VDMA Industrie 4.0 Forum,
Fraunhofer Application Center Industrial Automation
(IOSB-INA), Tech. Rep., 2017.

M. Hankel and B. Rexroth, “The reference architectural
model industrie 4.0 (RAMI 4.0),” ZVEI, April, 2015.
W. Kellerer, A. Basta, P. Babarczi, A. Blenk, M. He,
M. Klugel, and A. M. Alba, “How to measure network
flexibility? a proposal for evaluating softwarized net-
works,” IEEE Communications Magazine, no. 99, pp. 2—
8, 2018.

M. Peuster, H. Karl, and S. van Rossem, ‘“Medicine:
Rapid prototyping of production-ready network services
in multi-pop environments,” in 2016 IEEE Conference on
Network Function Virtualization and Software Defined
Networks (NFV-SDN), Nov 2016, pp. 148-153.

