
TSNSCHED: Automated Schedule Generation for
Time Sensitive Networking

Aellison Cassimiro T. dos Santos
Federal University of Paraı́ba

Paraı́ba, Brazil
Email: cassimiroaellison@gmail.com

Ben Schneider
fortiss

Munich, Germany
Email: schneider@fortiss.org

Vivek Nigam
fortiss

Munich, Germany
Email: nigam@fortiss.org

Abstract—Time Sensitive Networking (TSN) is a set of stan-
dards enabling high performance deterministic communication
using different scheduling mechanisms. Due to the size of
industrial networks, configuring TSN networks is challenging to
be done manually. We present TSNsched, a tool for automatic
generation of schedules for TSN. TSNsched takes as input the
logical topology of a network, expressed as flows, and outputs
schedules for TSN switches using an SMT-solver. The generated
schedule guarantees the desired network performance (specified
in terms of latency and jitter), if such schedules exist. TSNsched
can synthesize IEEE 802.1Qbv schedules and supports unicast
and multicast flows, such as, in Publish/Subscribe networks.
TSNsched can be run as a standalone tool and also allows rapid
prototyping with the available JAVA API. We evaluate TSNsched
on a number of realistic-size network topologies. TSNsched can
generate high performance schedules, with average latency less
than 1000µs, and average jitter less than 20µs, for TSN networks,
with up to 73 subscribers and up to 10 multicast flows.

I. INTRODUCTION

Time Sensitive Networking (TSN) is a recent OSI layer
2 network protocol standard (IEEE 802.1Q [2]) that extends
Ethernet. It is developed to address the increasing performance
demands of, for example, industrial automation applications
like motion control, where the movement of components has
to be synchronized in a microsecond range [15]. Many of
these applications require multicast flows as the same data,
e.g., position of the axis, is sent to different actuators, as well
as combine high priority traffic with best-effort traffic.

TSN achieves high performance requirements by a set
of sub-standards which provide, for example, high precision
time synchronization and a time-triggered scheduler [1], [2].
Moreover, TSN allows the co-existence of best-effort flows
and flows that take advantage of the high precision time
synchronization, e.g., flows that require low latency and jitter.

The major problem for TSN to be successfully adopted
in the industry is the complex configuration of the different
TSN schedules. The complexity caused by the growth of net-
works and the necessary domain-specific knowledge about the

We thank Tiziano Murano for fruitful disscussions. Nigam and Cassimiro
have been partially supported by CNPq projects 425870/2016-2, 303909/2018-
8 and and fapesp project 15/24516-1. This project received funding from the
EUs Horizon 2020 research and innovation programme under grant agreement
No 830892. Schneider was supported by the DEVEKOS project, funded
by the German Federal Ministry of Economic Affairs and Energy (BMWi)
(no.01MA17004F).

requirements and network standards makes manual network
configuration infeasible.

We present the tool TSNSCHED1, which generates sched-
ules for TSN. It takes as input a network topology, including
the network flows, and network performance requirements,
including values for the maximum latency and jitter per flow.
Flows may be unicast or multicast. TSNSCHED reduces the
TSN scheduling problem to an SMT problem which is solved
using the Z3 SMT solver [12]. For a modular translation, we
split flows into Flow Fragments. If the scheduling problem is
shown to be solvable by Z3, then TSNSCHED extracts, from
the witnessing model, the TSN scheduling configuration for
each switch in the network topology. This includes the TSN
switch queues’ time slots, cycle times, and priority queues
associated with each flow.

The key motivation for developing TSNSCHED in JAVA is
our on-going efforts to integrate TSNSCHED with the eclipse
4diacTM framework2. 4diacTM is used for the development
of applications for distributed industrial automation systems.
The integration of TSNSCHED with 4diacTM will allow to
automatically deduce domain-specific requirements as input
for the schedule synthesis. It will also mean that TSNSCHED
will be used by a large and active set of users, leading to
further tool improvements.

Some other tools have been proposed for a similar purpose,
notably, the tool described in [11], which builds on the
foundational work carried out in [10]. While we have been
inspired by these works, TSNSCHED has some considerable
differences to existing tools. Besides being publicly available,
whereas the tool in [11] is proprietary, we enumerate below
some of TSNSCHED’s key features:
• Variations of TSN Scheduling Problem: One can spec-

ify a large number of aspects of the network, including
the specification of ports, switches, travel times, etc. This
allows for the combination of different variants of the
TSN scheduling problem. For example, it is possible to
combine the problems defined in [9] and in [10], [11]. The
former [9] does not explicitly encode TSN time windows,
thus not allowing to reason about its properties, while the
latter works [10], [11] encode TSN time windows, but

1TSNSCHED can be found at https://github.com/ACassimiro/TSNsched.
2See https://www.eclipse.org/4diac/

not the frame transmission time constraints. TSNSCHED
is able to specify both TSN time windows and frame
transmission time constraints.

• Unicast and Multicast Flows: Previous work [10],
[11] consider unicast flows, TSNSCHED allows for the
specification of both unicast and multicast flows.

• Best-Effort and TSN flows: TSNSCHED generates
schedules satisfying the given requirements for high per-
formance TSN flows as well as of flows using best-effort.
This contrasts with previous work that puts emphasis on
TSN flows;

• Standalone and API for Rapid Prototyping: While
it is possible to run TSNSCHED as a stand-alone tool,
TSNSCHED also provides a general API to enable Rapid
Prototyping. Indeed, this was motivated so that we can
easily integrate TSNSCHED with eclipse 4diacTM.

• Machine-Readable Schedule Outputs: The output gen-
erated by TSNSCHED is machine readable. This means
that it is, in principle, possible to generate configuration
files from TSNSCHED. We have not done so, as there is
an on-going discussion on the exact configuration format.

We believe that a reason for the increased expressiveness of
TSNSCHED is that we have found a suitable abstraction for
this problem. Instead of encoding given network flows as a
end-to-end specification, we split flows into Flow Fragments.
This modular specification of the problem improves the un-
derstandability of the code and of the specifications generated.

Our experiments demonstrate that TSNSCHED is capable of
generating high performance TSN schedules with low average
jitter even for relatively large networks (with up to 5 flows
and up to 73 subscribers). Despite the admissible average jitter
of 25µs, the schedules generated by TSNSCHED guaranteed
a much lower average jitter of 4.85µs even in some larger
scenarios. We also observed that TSNSCHED’s performance
worsens when dealing with larger flows, i.e., flows with more
switches, and with flows with performance close to the upper
or lower limit of the duration of cycles.

Section II explains the TSN scheduling problem. Section III
describes TSNSCHED execution process and in Section IV
we present some details of the problem encoding. Then in
Section V, we describe and evaluate our experimental results.
We conclude in Section VI discussing related and future work.

II. TIME SENSITIVE NETWORKING (TSN) SCHEDULING
PROBLEM

The Time-Aware-Shaper (TAS) according to
IEEE802.1Qbv [2] is designed to ensure determinism
and real-time by reserving bandwidth via time slots. An
example of a (trivial) scheduling problem is shown in
Figures 1 and the correlating schedule in Figure 2.

The example topology contains Publishers Pub and Sub-
scribers Sub and two switches SW1 and SW2. Lets assume
that Flow1, from Pub1 to Sub1, belongs to a safety critical
application with hard real-time requirements sending periodic
traffic. Flow2, Pub2 to Sub2, periodically transmits process

SW1 SW2

Pub1

Pub3

Sub1

Sub2

Sub3

Pub2

Fig. 1. Network topology with Publishers (Pub) and Subscribers (Sub)
connected via a single link (SW1 to SW2)

cyclestart p1start p2start

p1duration p2duration

cycleduration

Fig. 2. IEEE802.1Qbv schedule for the port that connects SW1 to SW2

data into the cloud for analysis purposes and has determin-
istic requirements. Flow3, Pub3 to Sub3, is a best effort
stream which requires high bandwidth (e.g., video data for
visualization) but is not critical for the function or safety of
the production plant. In this setup all streams compete for
bandwidth on the link between SW1 and SW2. Without a
proper scheduling mechanism it might happen that the low
priority best effort Flow3 consumes the bandwidth which
is needed by the higher prioritized Flow1 and Flow2. The
TAS [2] enables the time-triggered scheduling of flows using
bandwidth reservation by assigning different flows to their
appropriate priority (1-8) and finding time slot for each of
the priority queues on a transmission port. The example TAS
schedule shown in Figure 2 shows a valid configuration where
Flow1 is mapped to priority p1, Flow2 is mapped to priority
p2 and the rest of the cycle is open for transmitting best effort
traffic.

The scheduling problem of the TAS can be summarized
as finding the cycle duration, the time slot starting time
and the time slot duration [16]. Moreover, these slots shall
specify some specific TSN requirements, e.g., be separated by
a Guard-Band under some conditions, and many others.

This time-triggered scheduling problem is a bin-packing
problem and known to be NP-complete [9]. Solving it man-
ually is a time-consuming and error-prone task that needs
detailed domain-specific knowledge about the communication
system and application.

Moreover, current trends show that the complexity of
scheduling will grow in the future. An example can be given
from the industrial automation domain where topologies con-
tinue to grow (known as IIoT – Industrial Internet of Things).
Therefore, the requirements of future industrial networks make
a manual configuration infeasible.

III. TSNSCHED DESCRIPTION

TSNSCHED takes as input a scheduling problem for de-
terministic high performance periodic network traffic and

Fig. 3. TSNSCHED execution process overview.

performance criteria, namely, maximum latency and jitter per
packet per flow, and returns the scheduling configurations for
all ports of the TSN switches in the network topology.

Figure 3 depicts the steps taken by TSNSCHED for gen-
erating a TSN schedule. It starts by the user specifying
the Network Requisites, extracting the necessary network
information, e.g., flows, maximum latency and jitter, etc.

User Input: If the user is importing TSNSCHED as a project
library, a JAVA file containing the specification of the topology
made with the classes provided by the TSNSCHED package
can be used to model a network. The user specifies the scope
of the network, providing properties of switches, devices and
flows involved in the network. These properties include:

• Interval between packets sent by a device;
• Time to travel between switches;
• Time taken to process a packet in an egress port (depen-

dant on link speed and packet size);
• Maximum cycle duration per switch;
• Minimum cycle duration per switch;
• Maximum size of priority transmission window;
• Maximum guard band size per switch;
• Maximum tolerated latency per packet per flow;
• Maximum tolerated jitter per packet per flow.

The tool can also be used as a standalone software by
providing the class with the network specification as input.

Generating Input: TSNSCHED also includes a topol-
ogy generator, which generates topologies according to user-
controlled parameters, such as number and size of flows. These
parameters will be used to define the values mentioned in the
list above, and also to define certain properties of the flows.
This is a useful feature to carry out experiments.

Setting Flow Fragments: With the scenario completely
modeled as JAVA objects, the first task performed by
TSNSCHED is the division of a flow into flow fragments,
which include the conversion of the user-defined data to Z3
variables. Section IV describes Flow Fragments and their
encoding in Z3.

@ Switch6: Cycle duration: 400
...
@ Fragment name: flow1Fragment1
@ Fragment node: switch6 Port name
(Virtual Index): switch6Port0
@ Fragment next hop: switch2 Fragment
priority: 1
@ Fragment slot start: 2 Fragment slot
duration: 40
@ (1) Fragment departure time: 0
@ (1) Fragment arrival time: 1
@ (1) Fragment scheduled time: 57/4

Fig. 4. Illustration of TSNSCHED output.

Setting Scheduling Rules: Once all the Z3 variables are
created, the rules that shape the schedule are given to Z3.
Flow fragments allows to apply the rules over each link of the
flow, as every port object can iterate over the flow fragment
objects applying the constraints to the variables used by the
solver. As described in Section IV, additional constraints can
be added in order to model variants of the TSN scheduling
problem, such as those specified in [9] and [11].

Generating Schedule: With the specified rules, Z3 attempts
to solve the specified scheduling problem. Given the complex-
ity of such problem to an SMT solver, most of the execution
time of the software is spent here. If the problem cannot be
solved using the rules that were previously specified, a warning
is issued; otherwise TSNSCHED proceeds to the next stage.

Generating Output: After successfully solving the
scheduling problem, the tool extracts the values for the vari-
ables from the solutions, such as:

• Start of the cycle of each switch;
• Duration of the cycle of each switch;
• Start of time window for transferring priority traffic;
• Duration of time window for transferring priority traffic;
• Priority of the packet in each hop;
• First sending time of a packet of a flow.

The task now is to store these values into the objects used to
model the network, so the user can operate them as prefered.

Tool Logs: A set of logs containing the information of the
network is also created. This way, if used as a standalone tool,
TSNSCHED still can provide a way to the user to analyze the
generated schedule.

An example of the output is shown in Figure 4. It shows
that the inferred cycle duration of the switch6 is 400µs.
It also specifies the Flow Fragment flow1Fragment1
connecting switch6 to the switch switch2 using port
switch6Port0. This flow is assigned by TSNSCHED to
priority 1, and uses a time slot with duration of 40µs at a
starting time of 2µs after the start of the switch’s cycle. It
also specifies the departure, arrival and scheduled time of the
flow fragment. A packet departs at time 0µs, arrives at the
switch at time 1µs and it leaves the switch at time 57/4 =
14.25µs.

Switches’ Gate Control Lists (GCLs): With the informa-

Device 1 Switch 1 Switch 2

Fragment F1F1 Fragment F1F2

dt at st
dt′

at′

Device 2

st′

Flow1

Fig. 5. Illustration of a flow represented by Flow Fragments.

tion contained in the log, the user can give the information
given by TSNSCHED as an input to the network configuration,
creating the schedules in the switches’ GCLs. This step is
currently done manually. We intend to generate these config-
uration files automatically, once the exact format is decided.

IV. Z3 ENCODING AND EXPRESSIVENESS

We describe part of the encoding in Z3 carried out by
TSNSCHED and illustrate the expressiveness of TSNSCHED
later in this Section. We start by introducing some data
structures which contain the domain-specific data required by
TSNSCHED to generate a TSN schedule.

For generating a schedule, we will be interested in the times
when a packet departs, arrives and is scheduled to exit the
devices and switches, as specified in the following definition.

Definition 1. Timing Variables: The timing variables t of a
packet3 are defined by the triple 〈dt, at, st〉.
• dt is the departure time of the packet;
• at is the arrival time of the packet;
• st is the scheduled time of the packet.

Figure 5 illustrates the timing variables ti of two flow
fragments, represented in the image by the variables 〈dt, at, st〉
and 〈dt′, at′, st′〉. They intuitively express the times when
packets depart, arrive and are scheduled in network nodes. We
can chain the events by simply adding suitable constraints. For
example, in Figure 5, the scheduled time of a flow should have
the same value of the departure time in the fragment stored
in the next hop. This is accomplished by simply adding the
constraint: st = dt′.

Therefore, instead of expressing the properties of the whole
flow as a single data-structure, we split flows into Flow
Fragments. Recall that the applications assumed here are cyclic
and deterministic. This means that in the application period,
a bounded number of packets is sent through a flow, and in
its corresponding flow fragments. Therefore, flow fragments
come with a sequence of time variables, as defined below.

Definition 2. Flow Fragment: A flow fragment ff is a tuple
〈prt,T〉, where:
• prt is the priority of the packets of the flow in the port

where the fragment is;
• T is a sequence of time variables T = [t1, . . . , tn]. Each

timing variables ti represents the departure, arrival and

3We abuse slightly of terminology and use packet to also express frames.

scheduled time of the i-th packet traversing the flow
fragment. We use T.size to denote the size of T.

The cycle of a port contains the necessary properties to
encapsulate all the variables regarding the start, duration and
transmission windows on a cycle, as defined below.

Definition 3. Cycle: A cycle c is the 4-tuple 〈SS,SD, s, d〉,
where:
• SS is a mapping from a priority number to a real value,

ss, specifying the start point in the cycle of the priority;
• SD is a mapping from a priority number to a real value,

sd, specifying the duration of the priority slot;
• s is the start of the first cycle;
• d is the duration of a cycle.

Notice that in the current implementation, each priority can
have a single priority slot per cycle.

A switch port contains a cycle, the flow-fragments using the
port, as well as specifications on the time required to transmit
a packet and to travel to the node connected to the port.

Definition 4. Port: A port p of a switch is a 4-tuple
〈c,PFF, travelT, transT〉, being the logical representation of
a port in the perspective of the scheduling problem.
• c is the cycle of the port;
• PFF is a set of flow fragments that go through that port;
• travelT is the time taken to travel from this port to its

destination and vice-versa;
• transT is the time taken by the port to transfer the packet

into the network.

Definition 5. Switch: A switch S is a set of ports.

We denote the set of all switches in the network as SW.
A network is a set of flows F composing all the flows

contained in the network. A flow is defined as follows.

Definition 6. Flow: A flow f is as a 4-tuple 〈FF,P, ρ, φ〉,
where:
• FF is a sequence containing the decomposition of a flow

into flow fragments ff in the path order;
• P is a sequence containing the ordered path of egress

ports p of switches from the source to destination node
of the flow;

• ρ is the periodicity of a flow, that is, the periodicity in
which packets are generated by device source of the flow;

• φ is the offset of sending, or the sending time of the first
packet of the flow.

Notice that the last hop of the packets is not included in the
conception of a flow for TSNSCHED (as visualized in Figure
5), since the travel time from the last switch in the path to the
end-device if fixed and be added when needed.

With the model defined above, we can establish a set of
constraints to shape schedules according to the given rules
of the network. TSNSCHED uses 25 types of constraints to
specify the conditions of TAS scheduling, with a few additional
optional constraints regarding avoidance of egress interleaving

[9] and reservation of bandwidth for best-effort traffic. Here,
we illustrate the core constraints for the transmission of the
packets.

For example, we define that the sending offset φ of a
flow is the moment in time where the first packet is sent.
In other words, the departure time of the first fragment of a
flow f.FF(1).T(1).dt is equivalent to the flow’s sending offset.
Also, periodically, a packet is sent according to the periodicity
ρ of a flow, meaning that every ρ units of time, another packet
will be sent. This is enforced using the Packet First Departure
constraint (Equation 1).

∀f ∈ F; i ∈ Z; 0 < i ≤ f.FF(1).T.size.

f.FF(1).T(i).dt = f.φ+ f.ρ× (i− 1)
(1)

For a more involved constraint, we shall enforce that the
transmission order of packets is kept, as TSN switches do not
transmit two packets that are in the same queue in an order
different from the arrival order. To do so, we use the FIFO
Priority Queue constraint (Equation 2).

∀S ∈ SW. ∀p ∈ S. ∀ff1,ff2 ∈ p.PFF; i, j ∈ Z;
0 < i ≤ ff1.T.size; 0 < j ≤ ff2.T.size;ff1 6= ff2 ∧ i 6= j.

ff1.T(i).at ≤ ff2.T(j).at ∧ ff1.prt = ff2.prt

=⇒ ff1.T(i).st ≤ ff2.T(j).st + p.transT
(2)

This constraint ensures that, for every packet, on any flow,
its transmission will only happen after the ones that arrived
before are transmitted. In a temporal perspective, following
the terminology used by TSNSCHED, this order can be kept
by making sure that a packet’s scheduled time is less than
another packet’s scheduled time only if its arrival time is also
smaller, given that both belong to the same priority.

To ensure that the transmission of a packet will not happen
outside of the boundaries of the time window for its priority
queue, it must be explicit in the constraints of the scheduler
that the transmission of a frame can only happen between the
start and end of a slot. To do so, a packet can be scheduled
to leave any time between the start of its priority slot plus
the transmission time up until the end of a slot according to
the Transmit Inside a Time slot constraint (Equation 3). The
constant numCycles is the maximum number of cycles in
an application period. It is computed taking into account the
minimum allowed cycle time.

∀S ∈ SW. ∀p ∈ S. ∀ff ∈ p.PFF, i, j ∈ Z;
0 < i ≤ ff.T.size; 0 ≤ j < numCycles.

ff.T(i).st ≥ p.c.s + p.c.d× j + p.c.SS(ff.prt) + p.transT ∧
ff.T(i).st ≤ p.c.s + p.c.d× j + p.c.SS(ff.prt) + p.c.SD(ff.prt)

(3)

For example, lets assume a packet is transmitted in a time
window that begins at the 20th microsecond of a cycle and
ends at the 30th microsecond of the same cycle and that
the transmission time of that packet in that port takes 5
microseconds. Then the scheduled time of that packet must
fall between 25 and 30 microseconds of that cycle.

Other much more involved constraints ensure, for example,
that there will be no gaps between the gate opening and the
transmission process of a packet.

Due to the size of this constraint, it has been broken into 4
predicates Send Aft Another Packet, Arr Bef Slot Start, Arr In
Slot and Arr Aft Slot End, depicted, respectively, by Equations
5, 6, 7, and 8. These sub-formulas form the Send As Soon As
Possible constraint shown in Equation 4.

∀S ∈ SW. ∀p ∈ S. ∀ff1,ff2 ∈ p.PFF.

SendAftAnotherPacket ∨
(ArrBefSlotStart ∧ArrInSlot ∧ArrAftSlotEnd)

(4)

The SendAftAnotherPacket predicate (Equation 5) spec-
ifies that the scheduled time of every packet must be equal to
the scheduled time of another packet plus the transmission
time. This predicate covers cases where a packet i arrives and
there is another packet j in its priority queue, which is verified
by comparing the arrival time of i and the scheduled time of j.
The FIFO Priority Queue constraint (Equation 2) guarantees
that i will be properly transmitted in its turn in case there are
multiple packets in the queue.

∃i, j ∈ Z; ff1 6= ff2 ∧ i 6= j;

0 < i ≤ ff1.T.size; 0 < j ≤ ff2.T.size.

(ff1.prt = ff2.prt ∧ ff1.T(i).at > ff2.T(j).at) ∧
ff1.T(i).st = ff2.T(j).at + p.transT

(5)

The ArrBefSlotStart predicate (Equation 6) specifies that
if a packet arrives before the beginning of a time slot, it will
be transmitted as soon as the slot starts.
∀i, j ∈ Z; 0 < i ≤ ff1.T.size; 0 ≤ j < numCycles.

((ff1.T(i).at < p.c.SS(ff1.prt) + p.c.s+

p.c.d× j) ∧ (ff1.T(i).at ≥ p.c.s + p.c.d× j)) =⇒
ff1.T(i).st = p.c.SS(ff1.prt) + p.c.s +

p.c.d× j + p.transT

(6)

The ArrInSlot predicate (Equation 7) specifies that if a
packet arrives during a time slot and there is enough time to
transmit, it must be transmitted immediately.
∀i, j ∈ Z; 0 < i ≤ ff1.T.size; 0 ≤ j < numCycles.

((ff1.T(i).at ≤ p.c.SS(ff1.prt) + p.c.SD(ff1.prt) +

p.c.s + p.c.d× j − p.transT) ∧ (ff1.T(i).at ≥
p.c.SS(ff1.prt) + p.c.s + p.c.d× j)) =⇒
ff1.T(i).st = ff1.T(i).at + p.transT

(7)

The ArrAftSlotEnd predicate (Equation 8) specifies that
if a packet arrives during a slot and there is no time to transmit
or after the slot, it will be transmitted at the beginning of the
next slot in the next cycle.
∀i, j ∈ Z; 0 < i ≤ ff1.T.size; 0 ≤ j < numCycles.

((ff1.T(i).at > p.c.SS(ff1.prt)+

p.c.SD(ff1.prt) + p.c.s + p.c.d× j − p.transT)∧
(ff1.T(i).at < p.c.s + p.c.d× (j + 1)))

=⇒ ff1.T(i).st = p.c.SS(ff1.prt)+

p.c.s + p.c.d× (j + 1) + p.transT

(8)

By defining a constraint which guarantees the order of
transmission of the packets according to its arrival time,
one of the implications in ArrBefSlotStart, ArrInSlot
or ArrAftSlotEnd will have its left side evaluates to true.
Therefore, one of the predicates will be true.

Equation 4 then specifies that a packet is either sent after
another which is in the queue, or immediately after arriving
if there is enough time or at the beginning of a time slot if it
arrived too late or too early.

A. Network Requirements Specification

To enforce the user-defined maximum latency, a constraint
can be created specifying that the difference between the last
scheduled time and first departure time must be smaller than
a maximum latency maxLatency. Since it is considered that
the time to reach a device is fixed and defined in the port
by the user, there is no need to add the travel time to the last
scheduled time in this equation. Given that each flow is broken
into n fragments, this is enforced by the Maximum Allowed
Latency constraint (Equation 9).

∀f ∈ F; i ∈ Z. 0 < i ≤ f.FF(1).T.size.

maxLatency ≥ f.FF(n).T(i).st− f.FF(1).T(i).dt
(9)

With the latencies of the packets of a flow, the constraint
for maximum jitter per packet of a flow can be created. To
do so, a constraint must specify that the difference between
the latency of a packet and the average latency of a flow f
(AvgLatency(f)) must not be greater than the maximum jitter
maxJitter, as shown in the Maximum Allowed Jitter constraint.

∀f ∈ F; i ∈ Z. 0 < i ≤ f.FF(1).T.size.

maxJitter ≥
|(f.FF(n).T(i).st− f.FF(1).T(i).dt)−AvgLatency(f)|

(10)

These two constraints can be exemplified using a scenario
with a flow that sends three packets. If the maximum allowed
latency for this flow is 500 µs and the maximum allowed
jitter is 25 µs, a solution where the latencies of the packets
are equals to, respectively 495, 500 and 505 microseconds
wouldn’t be valid, as the latency of the third packet would
disrespect the Maximum Allowed Latency constraint, even if
the jitter has a value of 5. Similarly, if the latencies of the
packets are equal to, respectively 400, 450, and 500, even
though these values respect the Maximum Allowed Latency
constraint, the average latency variation of the packets 1 and
3 are equals to 50 microseconds, disrespecting the Maximum
Allowed Jitter constraint.

Regarding the usage of Z3 and its offered theories,
TSNsched only uses Linear Arithmetic theory. Although we
use quantifiers in the formal model, they are flattened in the
implementation to improve efficiency.

B. TSNSCHED Expressiveness

We demonstrate the expressiveness of our encoding. As
illustrated above, the encoding of the TSN scheduling problem

is complicated, as there is a large number of aspects to
consider. Therefore, finding suitable abstractions for both the
formal model and implementation, such as, Flow Fragments,
helps not only for the understandability of the constraints, but
also allows to express more conditions and properties, when
compared to other encodings such as [7], [11], [10]. This
is also reflected in the tool implementation, leading to more
maintainable code. We illustrate TSNSCHED’s expressiveness
below.

1) Avoid starvation of best-effort traffic: While most of the
work on scheduling TSN traffic focuses on aspects regarding
priority traffic, it is of great importance to consider the best-
effort traffic transmitted through the TSN switches. This is
because the focus on the transmission of priority packets might
damage the QoS of applications using non-priority traffic [14].

For instance, consider a vehicle using TSN compliant equip-
ment is to transfer data between sensors and cameras using
best-effort traffic to transfer data from cameras to a screen.
If not enough bandwidth is reserved for such traffic, a jittery
and delayed video might be presented at the vehicle’s output
screen.

With TSNSCHED’s modular design, users can configure
how much of a cycle must remain free for non-priority traffic
without affecting the timing variables of the flows’ packets.
One can easily add a constraint for this purpose. In particular,
we simply constraint the sum of the size of the slots as
a proportion of the cycle duration (see Definition 3). The
remaining proportion will be available for best-effort traffic.

2) Implementation of unicast and multicast flows: As stated
in [9], regarding the formal modeling of unicast flows, it is a
trivial step to generalize such model to work with multicast
flows. Still, this simple generalization of the model can entail
in implementation problems as the flows will have to be
individually specified. Convoluted solutions may lead to the
creation of additional formulas that the solver must handle.

By definition, the fragment of a flow contains the necessary
information regarding the timing of packets and the priority
of a flow in one switch. Hence, this low level encapsulation of
the flows allows for the simplification of a multicast flow. If
the same packet from a flow is sent from a switch to multiple
switches, the fragments created in these switches only need
to be linked to the previous fragment without transforming
multicast flow into multiple bound unicast flows.

3) TSN Scheduling Problem Variants: With respect to the
work of [9] and of [10], [11], there are some important
differences in the encoding. On the one hand, [9] does not
explicitly encode TSN time windows, thus not allowing to
reason about its properties, but focus on the frame transmission
constraints. On the other hand, [10], [11] encodes TSN time
windows, but not the frame transmission time constraints.

By having control of the individual fragments of the flows
and the cycles of each switch, TSNSCHED is able to specify
conditions on both TSN time windows (SS and SD in Defini-
tion 3) and frame transmission time (φ in Definition 6), even
mixing the two types.

One difference, however, is that in the current implementa-
tion only one gate of a queue can be opened per priority in a
cycle, whereas [10], [11] allows for multiple slots per priority
per cycle. As described above, we can easily accomodate this
change, but given our experiments, we did not need to do so.

Whilst not currently available, the iterative approach to
solving the problem presented in [9], in order to improve the
scheduler’s execution time, can be implemented by continu-
ously adding flows to the solver. Since our experimental results
are adequate, we did not further investigate this option.

Finally, it should be possible to extend the class Flow
Fragment, specifying the translation to Z3, in order to generate
other types of TSN mechanisms, such as, the Asynchronous
Traffic Shaper [4] or Cyclic Queuing and Forwarding [3].
It is also possible to combine the different schedulers in
a convergent network. An example of standard outside of
the TAS’s boundaries which can be used by TSNSCHED
is the Per-Stream Filtering and Policing standard (IEEE
802.1Qci/802.1CB), allowing packets from a flow to have
different priorities in different hops [8]. For the scenarios
considered in the tool evaluation presented in Section V, the
schedules implement Per-Stream Filtering and Policing.

V. EXPERIMENTAL EVALUATION

For all the scenarios considered here, we assume a network
with 10 TSN switches and 50 physical devices. We also
assume that each flow generates 5 packets in an application
period. We generate a number of Publish Subscribe flows using
the topology generator and classify these flows according to
their size and their packet periodicity. We used the following
three different size flows, each with one publisher:
• Small Flows, containing 3 switches and at most 5 sub-

scribers;
• Medium Flows, containing 5 switches and at most 10

subscribers;
• Large Flows, containing 7 switches and at most 15

subscribers.
The larger the flow, the harder is the scheduling as the depth
of the flow and the number of subscribers increase.

High network performance applications have flows sending
packets with periodicity between 100µs and 2000µs [5]. We
consider here the following types of flows:
• Normal Performance Flows, which send packets with

periodicity of 2000µs;
• High Performance Flows, which send packets with

periodicity of 1000µs.
For each flow, we considered a maximum latency of 1000µs
and maximum jitter of 25µs, which are adequate for the type
of network flow performance described above.

Unfortunately, there are no available benchmarks for the
analysis of schedules for TSN networks. A realistic example
for a distributed industrial application is the VDMA R+A
demonstrator described in [6]. While the exact topology is not
provided, this demonstrator contains 26 nodes and 28 unicast
flows, including best-effort traffic. The size of this application

is in the same order as the size of our scenarios. Therefore,
TSNSCHED would, in principle, be capable of generating
schedules for the VDMA R+A Demonstrator.

a) Evaluation: Table I summarizes our experimental
results, which were carried out on 8 virtual cores of a Intel(R)
Xeon(R) CPU E5-2620 v3 @ 2.40GHz processor with 16 Gb
DDR4 memory. For each scenario (i.e., small, medium, or
large flows), we ran TSNSCHED assuming each flow is of
Normal and High performance. We evaluated the average jitter,
average latency and TSNSCHED’s execution time. We set a
timeout of 80 hours for our experiments (marked with TO in
the table). Since schedules typically need to be generated only
once, such long execution times are acceptable in practice.

Overall TSNSCHED performed well. It was able to construct
schedules that satisfy the network performance criteria (maxi-
mum latency of 1000µs per packet and maximum jitter of 25µs
per packet per flow) for networks with up to 73 subscribers and
up to 10 publishers. We were also positively surprised by the
overall average jitter which in most cases was well below the
maximal admissible jitter. Even in the larger experiments, the
generated schedule could guarantee an average jitter of 4.85µs
(high performance, 3 medium flows). For a comparison, the
average jitter in experiments with unicast flows described
in [16] was between 10µs and 50µs.

Furthermore, for the normal performance scenarios, the
latency was much lower than the maximum latency per flow
(1000µs). For the scenarios with high performance flows,
the average latency was still acceptable, but closer to the
maximum admissible latency.

Less surprising was the fact that TSNSCHED had more
difficulties in generating schedules for scenarios with larger
flows. This was expected as the complexity of the scheduling
problem increases with the size of flows, e.g., number of
switches to be configured.

The execution time of the experiments varied also as
expected, following an exponential pattern, as depicted by
Figures 6.(a), 6.(b), and 6.(c). The generation of schedules for
large flows also required much more time than for smaller
flows, which was also expected. Interestingly, TSNSCHED
required more time to generate schedules for normal than
for high performance flows. It is hard to understand exactly
why this happened, but we believe it is related to the range
of possible results available for normal performance flows,
leading to an increased search tree.

VI. RELATED WORK AND CONCLUSIONS

Up to the best of our knowledge, TSNSCHED is the first
openly available tool for generating TSN schedules. The
tool described in [11] is proprietary. We have been inspired,
however, by the foundational work carried out in [9] and [10]
in that they reduce the TSN scheduling problem to Z3. [9] does
not explicitly encode TSN time windows, thus not allowing to
reason about its properties. [10] and [16] encodes TSN time
windows, but not the frame transmission time constraints (see
section IV-B). TSNSCHED encodes both the transmission of
individual packets and the time windows in which the packets

Normal Performance Flows (Periodicity = 2000µs)
No of Flows 1 3 5 10
Small Only 0.68µs/509.55µs (4) 4.13µs/689.69µs (12) 4.54µs/631.54µs (22) 3.01µs/840.77µs (44)
Medium Only 1.38µs/887.18µs (9) 3.18µs/891.93µs (28) 4µs/653.78µs (46) TO (93)
Large Only 2.75µs/972.25µs (14) 4.85µs/621.16µs (44) 3.64µs/755.73µs (73) TO (147)

High Performance Flows (Periodicity = 1000µs)
No of Flows 1 3 5 10
Small Only 2.51µs/997.07µs (4) 1.79µs/903.69µs (13) 2.83µs/751.49µs (21) 1.95µs/946.43µs (45)
Medium Only 3.55µs/957.18µs (10) 2.81µs/797.70µs (28) 4.75µs/807.82µs (46) TO (91)
Large Only 1.07µs/993.55µs (14) 2.64µs/860.32µs (44) 3.02µs/936.40µs (69) NA

TABLE I
SUMMARY OF EXPERIMENTAL RESULTS. THE RESULTS ARE EXPRESSED AS jit / lat (sub), WHERE jit IS THE AVERAGE JITTER, lat IS THE AVERAGE

LATENCY AND sub IS THE NUMBER OF SUBSCRIBERS IN THE SCENARIO. WE MARK WITH TO THE EXPERIMENTS FOR WHICH TSNSCHED DID NOT
RETURN A RESULT WITHIN 80 HOURS AND NA IF THE EXPERIMENT WAS NOT PERFORMED.

0 5 10 15 20 25 30 35 40
0

40

80

120

160

200

240

280

320

Normal Performance
High Performance

0 5 10 15 20 25 30 35 40 45
0

80

160

240

320

400

480

560

640

720

800

Normal Performance
High Performance

0 10 20 30 40 50 60 70
0

800

1,600

2,400

3,200

4,000

4,800

Normal Performance
High Performance

(a) Small flows. (b) Medium flows. (c) Large flows.
Fig. 6. Execution time in minutes (y-axis) per number of subscribers (x-axis).

are placed, giving the user a wide range of configuration
parameters to comply with the desired results. Also, they
consider unicast flows, while we also extend TSNSCHED by
multicast flows. This has a great impact on implementation
and experimental results. In particular, to encode multicast
flows in Z3 in a modular fashion, we use flow fragments as
basic components for flows. This leads to a more readable,
modular and modifiable implementation. [16] mentions that
the adaptation of their model to work with multicast flows is
trivial, but is important to notice that the translation of this
model to code can be more challenging than initially thought,
as details in the implementation can lead to greater execution
times and wastage of resources. Moreover, in contrast to [16],
[10], we evaluate our tool on Publish Subscribe flows.

Finally, [13] proposes a graphical approach for modeling
the network as input and methods for generating schedules
from unsatisfiable cores in Z3. It has a very similar structure
of solution as the previous mentioned work. This work seem
complementary as it seems possible to use TSNSCHED with
the proposed graphical approach.

It is also important to notice that the previously mentioned
work does not take in consideration any form of waiting
for transmission of packets (except if a packet arrives and
there is another in the transmission queue). The solver always
attempt to wrap the transmission of packets inside the arrival
of a packet and its transmission. This may lead to a more

limited set of possible answers for the scheduling problem.
TSNSCHED considers the scheduling of packets that may
arrive outside of its transmission windows or during the
transmission of other packets, creating more flexible schedules.

Aside from the Time-Aware Shaper to which TSNSCHED
was design for, other schedulers can be used to handle the
transmission of packets aiming to comply with performance
requirements on TSN networks, but, if used in their out-of-the-
box state, they might fail to meet the requirements in time-
critical applications [17].

This paper describes the tool TSNSCHED, the first openly
accessible tool that generates schedules for high performance
deterministic cyclic Time Sensitive Networks. We present the
first experimental results for schedule generation for multicast
flows, evaluation our tool on relatively large networks (up
to 73 subscribers) with varying flow characteristics (number,
size and performance). TSNSCHED generated schedules with
acceptable network performance (jitter and latency).

As future work, we are currently integrating TSNSCHED
into the 4diac framework for modelling industrial automation
systems. We are also currently investigating techniques for
further improving TSNSCHED’s performance by exploiting the
shape of the network, e.g., whether flows share switches or not
leading to divide and conquer methods.

REFERENCES

[1] IEEE 802.1ASRev - Timing and Synchronization for Time-Sensitive

Applications. Available online at https://1.ieee802.org/tsn/802-1as-rev/
last accessed on October 30th 2018.

[2] IEEE 802.1Qbv - Enhancements for Scheduled Traffic. Available
online at http://www.ieee802.org/1/pages/802.1bv.html last accessed on
October 30th 2018.

[3] IEEE 802.1Qch Cyclic Queuing and Forwarding . Available online at
https://1.ieee802.org/tsn/802-1qch/ last accessed on October 30th 2018.

[4] IEEE 802.1Qcr - Bridges and Bridged Networks Amendment: Asyn-
chronous Traffic Shaping. Available online at https://1.ieee802.org/tsn/
802-1qcr/ last accessed on October 30th 2018.

[5] A. Ademaj, D. Puffer, D. Bruckner, G. Ditzel, L. Leurs, M. Stanica,
P. Didier, R. Hummen, R. Blair, and T. Enzinger. Iic results white paper:
Time sensitive networks for flexible manufacturing testbed - description
of converged traffic types, April 2018.

[6] B. Brandenbourger and F. Durand. Design pattern for decomposition or
aggregation of automation systems into hierarchy levels. In 2018 IEEE
23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), volume 1, pages 895–901. IEEE, 2018.

[7] S. S. Craciunas and R. S. Oliver. Combined task- and network-level
scheduling for distributed time-triggered systems. Real-Time Systems,
52(2):161–200, Mar 2016.

[8] S. S. Craciunas, R. S. Oliver, and T. C. AG. An overview of scheduling
mechanisms for time-sensitive networks. Proceedings of the Real-time
summer school LÉcole dÉté Temps Réel (ETR), 2017.

[9] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner. Scheduling
real-time communication in ieee 802.1 qbv time sensitive networks.
In Proceedings of the 24th International Conference on Real-Time
Networks and Systems, pages 183–192. ACM, 2016.

[10] S. S. Craciunas, R. S. Oliver, and W. Steiner. Formal scheduling
constraints for time-sensitive networks. CoRR, abs/1712.02246, 2017.

[11] S. S. Craciunas, R. S. Oliver, and W. Steiner. Demo abstract: Slate
xns–an online management tool for deterministic tsn networks. In
2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 103–104, April 2018.

[12] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
TACAS, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[13] M. H. Farzaneh, S. Kugele, and A. Knoll. A graphical modeling tool
supporting automated schedule synthesis for time-sensitive networking.
In 2017 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1–8. IEEE, 2017.

[14] V. Gavriluţ and P. Pop. Scheduling in time sensitive networks (tsn)
for mixed-criticality industrial applications. In 2018 14th IEEE Inter-
national Workshop on Factory Communication Systems (WFCS), pages
1–4. IEEE, 2018.

[15] R. Hummen, S. Kehrer, and O. Kleineberg. White paper: Tsn-time
sensitive networking. Belden, St. Louis, MI, USA, Tech. Rep, 2017.

[16] W. Steiner, S. S. Craciunas, and R. S. Oliver. Traffic planning for time-
sensitive communication. IEEE Communications Standards Magazine,
2(2):42–47, JUNE 2018.

[17] S. Thangamuthu, N. Concer, P. J. Cuijpers, and J. J. Lukkien. Analysis
of ethernet-switch traffic shapers for in-vehicle networking applications.
In Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition, pages 55–60. EDA Consortium, 2015.

