
History and Perspectives of Knowledge-
augmented Machine Learning

Knowledge as Invariance

White Paper

2

Knowledge as Invariance –
History and Perspectives of Knowledge-augmented Machine Learning

Authors

Alexander Sagel

fortiss GmbH,
Guerickestr. 25
80805 Munich

Amit Sahu

fortiss GmbH,
Guerickestr. 25
80805 Munich

Stefan Matthes

fortiss GmbH,
Guerickestr. 25
80805 Munich

Dr. Holger Pfeifer

fortiss GmbH,
Guerickestr. 25
80805 Munich

kontakt@fortiss.org

Dr. Harald Rueß

fortiss GmbH,
Guerickestr. 25
80805 Munich

Dr. Hao Shen

fortiss GmbH,
Guerickestr. 25
80805 Munich

Dr. Julian Wörmann

fortiss GmbH,
Guerickestr. 25
80805 Munich

Tianming Qiu

fortiss GmbH,
Guerickestr. 25
80805 Munich

3

Content

Abstract 4

Introduction 5

Knowledge as Invariance 6

Machine Learning to Knowledge Acquisition 6

Relation to Informed Machine Learning 10

Neural Symbolic Integration 11

Recent Developments 13

Innovations in Neural Network Architecture 13

Invariance in Different Data Types 15

Recent Trends in Learning Paradigms 17

Conclusion 19

References 21

Imprint 26

4

Abstract
Research in machine learning is at a turning point.
While supervised deep learning has conquered the
field at a breathtaking pace and demonstrated the
ability to solve inference problems with unprece-
dented accuracy, it still does not quite live up to
its name if we think of learning as the process of
acquiring knowledge about a subject or problem.
Major weaknesses of present-day deep learning
models are, for instance, their lack of adaptability
to changes of environment or their incapability to
perform other kinds of tasks than the one they were
trained for. While it is still unclear how to overcome
these limitations, one can observe a paradigm shift
within the machine learning community, with re-
search interests shifting away from increasing the
performance of highly parameterized models to
exceedingly specific tasks, and towards employing
machine learning algorithms in highly diverse do-
mains. This research question can be approached

from di�erent angles. For instance, the field of
Informed AI investigates the problem of infusing
domain knowledge into a machine learning model,
by using techniques such as regularization, data
augmentation or post-processing.

On the other hand, a remarkable number of works
in the recent years has focused on developing mo-
dels that by themselves guarantee a certain degree
of versatility and invariance with respect to the do-
main or problem at hand. Thus, rather than investi-
gating how to provide domain-specific knowledge
to machine learning models, these works explore
methods that equip the models with the capability
of acquiring the knowledge by themselves. This
white paper provides an introduction and discus-
sion of this emerging field in machine learning re-
search. To this end, it reviews the role of knowledge
in machine learning, and discusses its relation to the
concept of invariance, before providing a literature
review of the field. Additionally, it gives insight into
some historical context.

5

Introduction
One of the most prominent researchers in deep
learning, Yoshua Bengio, cites the Global Work-
space Theory of Consciousness [39] as his pre-
ferred model of human cognitive capabilities [7].
According to this theory, human consciousness
can be grouped into two systems, with System 1
performing intuitive, automated tasks that we can
do instinctively and System 2 performing tasks that
require conscious decision making and can be de-
scribed verbally.

Current deep learning algorithms are particularly
good at performing System 1-level tasks. For instan-
ce, if we are presented with pictures of edible plant
matter and are asked to group them into nutritional
categories, such as fruits, vegetables, nuts, grains,
legumes, etc, we would perform this task instincti-
vely and probably without any hesitation. The same
task should also be easily accomplished by a neural
network, trained with the appropriate data. Consi-
der now an adaptation of the task, where we are
asked to group the same images into botanical ca-
tegories, such as leafs, fruits (in the botanical sen-
se), roots, seeds, etc. Many of us would probably
feel slightly less confident with performing this task,
but after reading up the according definitions, hu-
mans would likely still perform quite well. A neural
network, on the other hand, would typically require
re-learning all of its parameters.

The above example exposes two remarkable cog-
nitive capabilities present in humans that neural
networks typically lack: the ability to incorporate
complementary input into the task execution and
the ability to generalize a System 1 level skill to
changes in the problem setting. It makes sense to
treat these two capabilities as flip sides of the same
coin. The reason can be found in the No free lunch
theorem [23], since, broadly speaking, a model that
is perfectly adapted to one task can not be gene-
ralized to other tasks without either forfeiting per-
formance or infusing additional assumptions about
the task or the data into it.

Unsurprisingly, the field of Informed Machine Lear-
ning [81] that investigates how to enhance machi-
ne learning by means of prior domain knowledge
has gained considerable importance. The emp-
loyed techniques include methods such as data
augmentation, loss regularization, hyper-parameter
design or post-process filtering of the model out-
put [81]. However, these approaches build upon
the assumption that today’s o�-the-shelf deep
learning models o�er su�cient versatility to adapt
to specified scenarios on-demand. This is unlikely

the case and one of the major reasons for this has
to do with the research culture of the machine
learning community. As argued in [12], progress in
machine learning is heavily driven by universally
available and easily implementable benchmarks
and improvement of a model is measured by how
well it is adapted to these benchmarks. Now, what
used to be a catalyst of research advances for deep
learning is becoming more and more of a burden,
as demand for generalization increases and ad-
versarial attacks expose the weaknesses of highly
specialized training. This bias towards specialization
has been recognized and identified as a problem
by the community’s leading figures, such as Yoshua
Bengio, Geo�rey Hinton and Yann LeCun [46]. Si-
milar concerns were expressed by François Chollet
[12] and Gary Marcus [54].

These debates have sparked a number of research
directions that rather than studying the adaptation
of machine learning models to a specific problem
or situation, focus on their adaptability. This adap-
tability can refer to di�erent aspects of the problem
at hand, e.g. the lighting condition in visual data,
the length of a natural-language phrase or even
the skill that is to be learned itself. This white paper
is a modest attempt to provide an overview of the
most promising developments in this direction and
to exemplify their relation to the concept of know-
ledge in AI.

6

Knowledge as
Invariance

From Machine Learning to Knowledge
Acquisition

The Oxford Dictionaries define knowledge as
facts, information, and skills acquired by a person
through experience or education or the theoretical
or practical understanding of a subject. Current AI
systems, notably deep learning architectures, can
be described as systems that acquire facts or skills
through experience or education, i.e. training. Still,
neural networks can be hardly considered know-
ledgeable in the broader sense in which we unders-
tand this term. But what is it about knowledge that
current AI methods in general and deep learning
specifically fall short of? What should a “knowledge-
able system” be able to do that a typical deep neu-
ral network can not?

Figure 1 depicts the DIKW Pyramid [69] that groups
the terms data - information - knowledge - wisdom
along an abstraction hierarchy. While raw data is use-
less for carrying out any decisions, information infers
structure and task-bound function from data by pro-
viding answers to clearly specified questions [68].

In a way, today’s established deep learning systems
predominantly work on this level of abstraction.
They take raw data and infer just enough rules
from it, to answer questions such as “Does this
image contain a cat?” or “Did this reviewer enjoy
that book?”. If we think of wisdom as the level

corresponding to a hypothetical Artificial General
Intelligence (AGI), i.e. systems that can be conside-
red fully autonomous up to the point of asking for
a higher meaning or purpose of a task, knowledge
would correspond to a stage somewhere in-bet-
ween the two.

Knowledgeable machines should go beyond ans-
wering well-defined task-specific questions and see
a slightly bigger picture without necessarily beco-
ming fully autonomous in that. Davenport and Pru-
sak [14] describe knowledge as

[...] a fluid mix of framed experience, values, con-
textual information, expert insight and grounded
intuition that provides an environment and frame-
work for evaluating and incorporating new expe-
riences and information.

Note how this definition puts emphasis on adap-
tability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can
verify that we have knowledge in a field. Informed
systems di�er from knowledgeable ones in how
rigid they are with respect to a skill or a situation.
The transition from informed to knowledge-based
AI thus heavily depends on how invariant they be-
come.

Admittedly, machine learning has always been ab-
out invariance. Deep convolutional neural nets, for
instance, learn low-level invariances on the pixel
level, e.g. invariance to translation operations. Ho-
wever, invariance at higher levels of abstraction is
still rare to find in contemporary machine learning
models. In particular, we believe that the following
three types of invariance are crucial for knowledge-
based AI models.

Wisdom

Knowlege

Information

Data

Figure 1: The DIKW Pyramid.
Source: [36]

7

Invariance to the Skill

Deep Learning owes much of its success to the
supervised learning paradigm. At the same time, the
emphasis on supervised learning has been identified
as one of the major limiting factors in achieving
AGI [46]. Formally, most of the common supervised
learning problems can be written as some form of
function approximation, in which the task is to find
a

and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to

4

-parameterized function

and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to

4

(1)

that maps (approximately) each input data sample

and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to

4

 to a label

and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to

4

 according to the rules that have
been learned from a set of labeled training data

and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to

4

(2)

We generally assume that the training set has been
independently sampled from a joint distribution

and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to

4

 such that the function approximation can
be phrased as likelihood optimization for the train-
able parameter

and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to

4

, e.g. the entirety of weights in the
neural network to be trained. It should go without
saying, that by training a model in such a way, it
does not acquire knowledge regarding the data it
has been fed with, as knowledge is characterized by
being transferable from one skill to another.

In order to acquire knowledge, a model should not
just yield one particular function, but provide a pos-
sibility to infer di�erent kinds of functions with re-
spect to the data it has been trained on. For instan-
ce, a model that has been fed with natural images
should not just be able to classify the images in
categories, but perform semantically related tasks,
such as detecting which kinds of objects tend to
appear close to each other, how they are spatially
aligned with respect to each other and so on.

Invariance to the Data Distribution

Most common optimization objectives in machine
learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that
training and test data are sampled from the same
distribution. In reality, data is gathered under con-
ditions that can change. Arjovski et al. provide an
illustrating example of this issue in [3]: consider a
neural network that is trained to classify images into
photographs of cows and camels. As such pictures
are usually taken in the environments one would
expect to find the respective ruminants, the net-
work will likely tend to assign green grassland to the
former, and sandy landscapes to the latter category.
While from a statistical point of view, this is a per-

fectly legitimate way to infer correlations from the
data, it contradicts another aspect of knowledge
that transcends the System I-level skillset, namely
the capability of adapting to changes in situation,
context or environment.

This capability is typically referred to as out of dis-
tribution (OOD) generalization. Unfortunately, there
is no universally accepted metric that evaluates the
OOD capabilities of a model, since by its very de-
finition it does not characterize machine learning
models by what they generalize to, but by what they
do not generalize to (the training data distribution).

As an illustration of the di�culty to define an appro-
priate OOD objective, consider again the supervised
learning task of identifying the function

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

(3)

that maps from a data sample

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 to a label

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

, where the joint distribution

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 is deter-
mined by the environment

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

. Assuming an

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

loss, we could define the environment-dependent
objective function

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 as

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

(4)

But in order to minimize such an objective for all
environments

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 fairly, we would need to make
assumptions about the statistics of the environ-
ments themselves. For instance, the obvious opti-
mization problem

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

(5)

requires a model for the distribution

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 of environ-
ments. Note that estimating

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 from data would
require the training data to be representative of the
environments to appear in testing phase, which
contradicts the premise of OOD. One such possible
assumption is that the function can be written as

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

(6)

where

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 has the property that

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

(7)

does not depend on

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

. The function

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 is then said
to elicit an

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

-invariant predictor [3]. For instance, in
the cow/camel example above, a function that re-
moves the background from an image and replaces
it by neutral pixels, elicits an invariant predictor of
the class. Again, it is important to be aware of the
implicit assumptions that we make about

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

. In this
case, we assume that a change of

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 mainly e�ects
the background of an image. If

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 is trained from the

8

data, then we need to trust that if it elicits an invari-
ant predictor for the environments in

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

, it does so
also for all possible environments that could appear
in the testing phase.

A slightly di�erent attempt to formalize OOD has
been given in [32]. The authors assume a training
distribution

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 that describes the joint
probability of data

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 and label

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 and that does
not necessarily coincide with the unknown target
distribution

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 which describes the joint
probability of the environment for the model to be
deployed in. However, it is assumed that the con-
ditional distribution of

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

, given a realization of

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

, is
universal to all possible conditions, i.e.

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

(8)

for all possible

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 and no matter what the tar-
get environment looks like. The authors approach
this aim by learning the function

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 such
that the property of

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 being indepen-

dent of x is fulfilled. To this end, a measure of inde-
pendence that can be easily optimized is necessary.

Invariance to the Data Syntax

Data is always redundant and this is true regardless
of it being present in the form of visual data, audio,
text or any other possible data modality. This redun-
dancy manifests in a set of implicit rules that deter-
mine how meaning is encoded within the respecti-
ve data modality. For documents written in natural
language, for instance, these rules are determined
by grammar, whereas in natural images these rules
stem from physical laws, as well as our geometrical
notion of objects, backgrounds, compositions, etc.
When we as humans process data that we gather
through sensory stimuli, we are able to abstract
knowledge from its syntactical configuration.

Deep learning has become so successful precisely
because CNNs are capable of learning representa-

9

tions that are invariant to syntactical clutter such as
the spatial location or the scale of an object in an
image. However, this degree of invariance in neural
networks is mostly limited to visual and sequential
data, and specifically not complex, structured or
compositional data types used in knowledge repre-
sentation, such as

Tables

Graphs

Algebraic or Logical Expressions

Complex Natural-Language Phrases

Sets

Indeed, neural networks are pure vector processing
machines. This means that they realize mathemati-
cal functions that map from one real-valued, finite
vector space to another. The involved sets are thus
naturally equipped with mathematical structure
that symbolic data, to name an example, does
not possess. Specifically, euclidean vector spaces
have a metric, and hence allow for distance-based
classification. Functions on vector spaces can also
be equipped with properties such as linearity or
di�erentiability, enabling optimization via gradient
descent. Non-vector data, on the other hand, lacks
many of the conveniences that neural networks
relies on, as listed in the following.

Lack of interface for non-euclidean data structures
Neural networks expect vectors with a fixed di-
mension at its input and output. While down- and
upscaling is possible for input images of di�erent
resolutions, normalizing the size of symbolic data
is in general not trivial. Moreover, vectors induces a
natural order of their elements. This can also not be
guaranteed for non-euclidean data, such as graphs
or sets.

Lack of a universally applicable inductive bias
Consider the task of continuing the number se-
quence 1, 2, 3, 4… Humans that learn to count from
an early age on will naturally make the assumption
that this is the beginning of the sequence of natural
numbers. Neural networks are universal function
approximators. This implies that without any additi-
onal assumption about the data at hand, there is no
reason to believe that a neural network would con-
tinue the sequence the same manner as us. These
kinds of prior assumption about the data is called
the inductive bias. Deep learning has an inductive
bias towards translation invariance and self-similarity
due to the weight-sharing in convolutional filters.
However, these assumptions do not hold for non-

image data, in general. The limitations of the induc-
tive bias in deep learning have been recently illustra-
ted by the benchmark presented in [12]. It contains
seemingly simple, low-dimensional abstract toy
examples that are easily solved by humans within
minutes but are particularly di�cult to be learned by
means of neural nets.

Lack of continuity
Besides the fact that conversion from continuous
to discrete data and back is non-trivial and leads to
loss of information, the absence of continuity ma-
kes it almost impossible to perform gradient-based
optimization as it is common in deep learning.

Real syntactical invariance thus requires methods to
e�ciently process non-euclidean data. Unlike distri-
bution and skill invariance, that demand redefining
the learning procedure, syntactical invariance can
be realized on an architectural level, e.g. by means
of neural layers that generalize convolutions to
non-euclidean data.

Scope of This Work

This work provides a survey of developments in
machine learning that can be characterized as ap-
proaches to increase invariance towards the three
aspects of AI problems discussed in the previous
subsection. After providing some historical context
on symbolic knowledge, it discusses recent de-
velopments in deep learning.

First, di�erent architectural elements are reviewed
that can be used to increase syntax invariance for
di�erent data modalities. In particular, we consider
attention mechanisms that aim at extracting the re-
levant fragment within the incoming data and thus
reducing the sensitivity to syntactically redundant
input. Furthermore, capsule-based neural networks
are investigated as a mean to disentangle visual ent-
ities from their geometric configuration.

We then proceed to review approaches that gene-
ralize neural networks to non-vector data, in parti-
cular graphs and sets, mentioning also results from
recent studies on group action symmetries that are
crucial for theoretical understanding about inducti-
ve biases in CNN-like structures.

Finally two learning paradigms, namely meta-
Learning and self-supervised learning, which have
attracted increasing interest during the recent years
and have the potential to enhance skill and distribu-
tion invariance, are reviewed. Additionally, we take a
look at metric learning that has similar potential.

10

Relation to Informed Machine Learning

Knowledge is a subject of interest across many
fields within machine learning. In this section, we
would like to take a closer look at the field of Infor-
med machine learning, described by von Rüden et
al. in [81]. The motivation is that it can be conside-
red complimentary to the direction emphasized in
this work. Speaking in broad terms, Informed ma-
chine learning focuses on questions like “How do I
restrict my video prediction model to learning only
physically possible scenarios?” or “How do I tell my
autonomous driving system that the tra�c conditi-
ons have changed?” In short, it studies approaches
that adapt general-purpose machine learning mo-
dels to the problem-specific conditions by incorpo-
rating domain knowledge.

A major di�erence between [81] and the present
work is in the definition and characterization of the
term knowledge. While this work agrees with [81]

about how knowledge relates to information with
regards to its level of abstraction, we emphasize
the fluidity and adaptability of it. In other words,
our emphasis is on the fact that knowledge, once
gained, can not only be applied to one particular,
rigid problem setting, but adapts to the peculiarity
of each given situation. By contrast, von Rüden et
al. stress the aspect of formalization. After defining
knowledge as validated information, the authors
explain how it is characterized by the degree of
formalization with regards to its representation. This
generally implies that knowledge can be expressed
using natural language or a similar system of com-
munication.

As a consequence, von Rüden et al. treat knowled-
ge as input that is usually provided to the system
from an external source, typically by an expert who
gained his knowledge from domain experience in-
accessible to the model and with the capability to
formalize it in a machine-readable way. This input
is supposed to enhance machine learning models
by additional, formalized insights that could not be
incorporated within the training phase.

We, on the other hand, do not treat knowledge as
external to the system but as something it acqui-
res from possibly heterogeneous input and can
be applied in the context of di�erent scenarios.
Therefore, rather than investigating techniques that
leverage external, formalized inputs within machine
learning models, we focus on architectural devices
and learning paradigms that permit us to learn mo-
dels in a way such that adaptation to new, unseen
scenarios is carried out as seemlessly as possible.

As an example, consider again the camel/cow
classification problem from before. Recall that the
problem consists of building a classification system
that tends to wrongly include the semantically ir-
relevant scenery into the class assignment. Looking
at the problem from the point of view of Informed
machine learning, we would ask ourselves how to
appropriately formalize these changes in scenery
and how to communicate them to the model. By
contrast, from the perspective of invariance, we are
more interested in training the model in such a way
that the background is not taken into account when
the classification is performed.

That is not to say that we expect invariance-ba-
sed knowledge to supersede Informed machine
learning at some point. On the contrary, we expect
that these two fields will complement one another
in the future. It is thus important to be aware of the
di�erence in how knowledge is defined and cha-
racterized in these two related, but distinct research
fields.

11

Neural Symbolic
Integration
As stated in the previous section, the transition from
informed to knowledge-based AI heavily depends
on how invariant they become. Logical reasoning
can provide mathematically sound invariance to
tricky situations. For example, symbolic logic has
been used to define properties over the whole sys-
tem using formal methods. This ensured that the
software is safe against known risky behaviours.
Symbolic reasoning inherently builds upon invariant
properties that are mathematically true. Thus, for AI
to be knowledgeable, it needs absolute invariance
to show common sense (trivial situations) and ex-
pert behaviour as well.

Early approaches in reaching invariance hence re-
lied on integration of the connectionist approaches
with symbolic reasoning. However, in recent years
and in line with the success of deep learning, re-
search emphasis has shifted towards achieving inva-
riance by means of design choices in the connec-
tionnist system itself, without relying on additional
guidance from symbolic AI. This section provides
an overview of techniques that o�er invariance via
Neuro-Symbolic Integration (NSI), before we can
dive into the recent, purely connectionnist approa-
ches later on.

Traditionally, an artificial neural network (ANN) was
understood as a connectionist system that acquired
expert knowledge about the problem domain after
training (invariance to the skill). ANNs required raw
data and were able to generalize to unencountered
situations. However, the obtained knowledge was
hidden within the acquired network architecture

and connection weights. Symbolic systems, on the
other hand, utilized complex and often recursive
interdependencies between symbolically repre-
sented pieces of knowledge (invariance to the data
distribution). Realizing the machine learning bottle-
necks of using any of these paradigms in isolation,
integrated Neuro-Symbolic systems were proposed.
These hybrid systems were expected to combine
the two invariances–skill and data distribution–to
make the combined system robust to both.

Earlier methods of Neuro-Symbolic systems ad-
dressed the Neuro-Symbolic learning cycle as de-
picted in Figure 2 [4]. A front-end (symbolic system)
fed symbolic (partial) expert knowledge to a con-
nectionist system (ANN) that possibly utilized the
internally represented symbolic knowledge during
the learning phase (training). Knowledge extracted
after the learning phase was fed back to the sym-
bolic system for further processing (reasoning) in
symbolic form.

Later, [24] described the Neuro-Symbolic system
as a framework, where ANNs provide the machi-
nery for parallel computation and robust learning
(invariance to noise), while symbolic logic provides
an explanation of the network models. These ex-
planations facilitate the interaction with the world
and other systems (invariance to skill). It is a tightly-
coupled hybrid system that is continuous (ANN) but
has a clear discrete interpretation (logic) at various
levels of abstraction. These were able to extract lo-
gical expressions from trained neural networks and
used this extracted knowledge to seed learning in
further tasks. In other words, neural networks were
used to tackle the invariance to the noisy data and
the symbolic logic was used to obtain the invarian-
ce to skill. And as a hybrid model, it was expected
to solve knowledge-based tasks.

Symbolic System Connectionist System

Representation

Expert Knowledge

Refined Knowledge

Extraction

Reasoning Reasoning

Training

Figure 2: Neuro-Symbolic learning cycle. Source: [4]

12

deduction, and abduction) with the brain method of
making mental models. Computationally, it addres-
sed the integration of logic, probabilities, and lear-
ning. This led to the development of new models
with the objective of robust learning (invariance to
data distribution) and e�cient reasoning (invariance
to skill). Some success was achieved in various do-
mains like simulation, bioinformatics, fault diagno-
sis, software engineering, model checking, visual
information processing, and fraud prevention [16,
17, 25].

In parallel, another approach was using methods
like probabilistic programming [29] for the genera-
tive ML algorithms like Bayesian ML. Probabilistic
programs are functional or imperative programs
with two additional abilities: (1) obtain values at ran-
dom from distributions, and (2) condition values of
variables via observations. This allows probabilistic
programming to understand the program’s statisti-
cal behaviour. They can also be used to represent
probabilistic graphical models [42] which in turn
are widely used in statistics and machine learning.
These models have diverse application areas like
information extraction, speech recognition, com-
puter vision, coding theory, biology and reliability
analysis.

In the last decade, Neuro-Symbolic Integration fa-
ced many challenges and contributions [26]. Promi-
nent yet not fully solved challenges are as follows:

• Mechanisms of structure learning: Symbolic
logic like hypothesis search at concept level
(ILP) vs statistical AI using iterative adaptation
processes.

• The learning of generalization of symbolic rules

• E�ective knowledge extraction from large-scale
networks for purposes like explanation, lifelong
learning, and transfer learning

In contrast to early approaches using first order
logic, there was a shift towards using non-classical
logics [8] e.g. Temporal Logic [64], Modal Logic [15],
Intuitionistic Logic [75], Description Logic [45], and
logic of intermediate expressiveness e.g. Descrip-
tion Logic [45], Inductive Logic Programmming
using propositionalization methods [9], Answer-Set
Programming [52], Modal logic [15] or Propositional
Dynamic Logic [34].

Traditionally, Neuro-Symbolic integration was emp-
loyed to integrate cognitive abilities (like induction,

13

Recent Developments

Innovations in Neural Network
Architecture

Attention

Human beings can focus on a specific area in the
field of view or recent memories to avoid over-con-
suming energies. Inspired by the visual attention of
human beings, the attention mechanism in deep
learning is a concept that summarizes approaches
to extract the most informative subsets from sets
of data. It can aid in distilling the essential content
from data, making the model thus more invariant to
how the data is organized syntactically.

Attention has risen to popularity in neural machine
translation (NMT). Many classical NMT approaches
are based on an encoder-decoder architecture,
where the encoder maps phrases word by word
to hidden state vectors and the decoder is trained
to model the probability of phrases in the output
languages conditioned over these vectors. Both the
encoder and the decoder are typically realized in a
recurrent manner. The translation is then formula-
ted as a likelihood maximization given the probabi-
listic language model of the decoder and the condi-
tioning over the hidden states.

One problem with this approach is that it does not
account for sentences of di�erent lengths. In long
sentences, the semantic context for each word
spreads out di�erently from shorter sentences. To
account for this, the authors of [5] have proposed to
include an attention mechanism that maps a subset
of the hidden state vectors in an encoded sentence
to a fixed-length context vector which is then fed
to the decoder instead of inputting the hidden state
vectors directly. The attention is implemented as a
weighted sum of normalized exponential functions.

In a work on transformer architectures [76], atten-
tion is defined more formally as a function In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton

11

(9)

The columns of

In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton

11

 are called queries, keys
and values, respectively. This function computes for
each query

In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton

11

 an attention vector

In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton

11

 by returning a
weighted sum of all values, i.e.

In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton

11

(10)

The weights are determined from some measure
of similarity between the queries and keys. A weight

In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton

11

 is high, if

In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton

11

 and

In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton

11

 are similar according to
the measure, and close to 0 otherwise. In neural
networks, attention blocks can be used in di�erent
ways. A fixed number of query vectors could be
implemented as trainable parameters of the atten-
tion blocks that receive sets of key-value pairs as an
input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to
three categories of attention mechanisms, namely
spatial attention, self-attention and channel-wise
attention.

Spatial attention imitates human visual attention
in a way such that the network is able to focus on
significant semantic areas in input images for final
decision makings. Queries describe ultimate classi-
fication or detection results, while values describe
pixel-level image areas and keys are feature maps
extracted by convolutional neural networks (CNN).
For instance, the image captioning work [86] is
based on a similar principle as the NMT approach
[5] described above, but the attention layer is used
to extract important regions from the input image,
rather than phrases from a sentence. Many works
use spatial attention concepts to improve detection
performance or enhance interpretability [40, 61].

Another important special case of attention in
the sense of Eq. (9) is self-attention, in which

In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton

11

 holds. Self-attention computes a repre-
sentation of an input tuple of feature vectors based
on their similarity between each other [76, 65]. This
concept resembles the non-local mean in image
processing. [83].

Channel-wise attention is used predominantly in
computer vision tasks by weighing channels of con-
volutional layers. Similar to the aforementioned spa-
tial attention, queries describe final classification or
detection outputs, while keys and values are feature
outputs, extracted from each channel of convolu-
tional layers, because the channels are known to be
activated by specific image patterns. For example,
the work [94] considers CNN channel features in a
pedestrian detection task and observes that di�er-
ent channels respond to di�erent body parts.

An attention mechanism across channels is em-
ployed to represent various occlusion patterns in
one single model, such that each pattern corre-
sponds to a combination of body parts. The adjust-
ed occlusion features

In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton

11

 can be written as

In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton

11

(11)

14

where

In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton

11

 represents the weights on channel
features

In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton

11

. Likewise, the work [37] uses chan-
nel-wise attention to aggregate the information
from the entire receptive field.

Capsules

The original motivation behind capsules was to
disentangle visual entities and their geometric rela-
tion to each other. Early works described capsules
as neural modules consisting of recogniton and
generation units. Both kinds of units are realized via
hidden convolutional layers.

Fig. 3 depicts a capsule layer as described in [35].
In the transforming autoencoders introduced by
that work, the recognition units process the
image at its input and return two parameters, a
probability

Figure 3: Depiction of a capsule layer. Source: [35].

and generation units. Both kinds of units are realized via hidden convolutional layers. Fig. 3
depicts a capsule layer as described in [35]. In the transforming autoencoders introduced by
that work, the recognition units process the image at its input and returns two parameters, a
probability p that a particular entity is present in the picture, and a vector T of pose coordinates

(Fig. 3: T =
[
x y

]�
). These values are passed on to the generation units, along with a vector

∆T that describes the change in pose (Fig. 3: T =
[
∆x ∆y

]�
). As a result, the generation

units create a new image from the visual entities and the new poses created from T and ∆T . The
contribution of each capsule to the generated output is determined by the presence probability
p.

It is known that the features extracted by convolutional neural networks become more complex
and expressive with increasing number of layers [47]. This due to the translationally equivariant
nature of convolutional filters as well as the fact that different semantic features appear in different
constellations throughout the training data. This is also the case for capsule neural networks but
the effect is reinforced by the additional pose information provided during the training process.

As an illustrating example, assume that we want to train a transforming autoencoder with
images of faces under different pose transformations. This kind of data is typically available and
readily labeled in publicly accessible datasets. During training, the output image would contain
the result of the change in pose. Different facial features such as mouth, ears, eyes or nose will
behave differently under a given pose transformation and thus be captured by different capsules.
The contribution of each capsule to the generation at the output of the transforming autoencoder
is determined by p. If the facial feature modeled by a capsule is absent from the image p should
be close to 0.

12

 that a particular entity is present in
the picture, and a vector

Figure 3: Depiction of a capsule layer. Source: [35].

and generation units. Both kinds of units are realized via hidden convolutional layers. Fig. 3
depicts a capsule layer as described in [35]. In the transforming autoencoders introduced by
that work, the recognition units process the image at its input and returns two parameters, a
probability p that a particular entity is present in the picture, and a vector T of pose coordinates

(Fig. 3: T =
[
x y

]�
). These values are passed on to the generation units, along with a vector

∆T that describes the change in pose (Fig. 3: T =
[
∆x ∆y

]�
). As a result, the generation

units create a new image from the visual entities and the new poses created from T and ∆T . The
contribution of each capsule to the generated output is determined by the presence probability
p.

It is known that the features extracted by convolutional neural networks become more complex
and expressive with increasing number of layers [47]. This due to the translationally equivariant
nature of convolutional filters as well as the fact that different semantic features appear in different
constellations throughout the training data. This is also the case for capsule neural networks but
the effect is reinforced by the additional pose information provided during the training process.

As an illustrating example, assume that we want to train a transforming autoencoder with
images of faces under different pose transformations. This kind of data is typically available and
readily labeled in publicly accessible datasets. During training, the output image would contain
the result of the change in pose. Different facial features such as mouth, ears, eyes or nose will
behave differently under a given pose transformation and thus be captured by different capsules.
The contribution of each capsule to the generation at the output of the transforming autoencoder
is determined by p. If the facial feature modeled by a capsule is absent from the image p should
be close to 0.

12

 of pose coordinates
(Fig. 3:

Figure 3: Depiction of a capsule layer. Source: [35].

and generation units. Both kinds of units are realized via hidden convolutional layers. Fig. 3
depicts a capsule layer as described in [35]. In the transforming autoencoders introduced by
that work, the recognition units process the image at its input and returns two parameters, a
probability p that a particular entity is present in the picture, and a vector T of pose coordinates

(Fig. 3: T =
[
x y

]�
). These values are passed on to the generation units, along with a vector

∆T that describes the change in pose (Fig. 3: T =
[
∆x ∆y

]�
). As a result, the generation

units create a new image from the visual entities and the new poses created from T and ∆T . The
contribution of each capsule to the generated output is determined by the presence probability
p.

It is known that the features extracted by convolutional neural networks become more complex
and expressive with increasing number of layers [47]. This due to the translationally equivariant
nature of convolutional filters as well as the fact that different semantic features appear in different
constellations throughout the training data. This is also the case for capsule neural networks but
the effect is reinforced by the additional pose information provided during the training process.

As an illustrating example, assume that we want to train a transforming autoencoder with
images of faces under different pose transformations. This kind of data is typically available and
readily labeled in publicly accessible datasets. During training, the output image would contain
the result of the change in pose. Different facial features such as mouth, ears, eyes or nose will
behave differently under a given pose transformation and thus be captured by different capsules.
The contribution of each capsule to the generation at the output of the transforming autoencoder
is determined by p. If the facial feature modeled by a capsule is absent from the image p should
be close to 0.

12

. These values are passed
on to the generation units, along with a vector

Figure 3: Depiction of a capsule layer. Source: [35].

and generation units. Both kinds of units are realized via hidden convolutional layers. Fig. 3
depicts a capsule layer as described in [35]. In the transforming autoencoders introduced by
that work, the recognition units process the image at its input and returns two parameters, a
probability p that a particular entity is present in the picture, and a vector T of pose coordinates

(Fig. 3: T =
[
x y

]�
). These values are passed on to the generation units, along with a vector

∆T that describes the change in pose (Fig. 3: T =
[
∆x ∆y

]�
). As a result, the generation

units create a new image from the visual entities and the new poses created from T and ∆T . The
contribution of each capsule to the generated output is determined by the presence probability
p.

It is known that the features extracted by convolutional neural networks become more complex
and expressive with increasing number of layers [47]. This due to the translationally equivariant
nature of convolutional filters as well as the fact that different semantic features appear in different
constellations throughout the training data. This is also the case for capsule neural networks but
the effect is reinforced by the additional pose information provided during the training process.

As an illustrating example, assume that we want to train a transforming autoencoder with
images of faces under different pose transformations. This kind of data is typically available and
readily labeled in publicly accessible datasets. During training, the output image would contain
the result of the change in pose. Different facial features such as mouth, ears, eyes or nose will
behave differently under a given pose transformation and thus be captured by different capsules.
The contribution of each capsule to the generation at the output of the transforming autoencoder
is determined by p. If the facial feature modeled by a capsule is absent from the image p should
be close to 0.

12

 that describes the change in pose (Fig. 3:

Figure 3: Depiction of a capsule layer. Source: [35].

and generation units. Both kinds of units are realized via hidden convolutional layers. Fig. 3
depicts a capsule layer as described in [35]. In the transforming autoencoders introduced by
that work, the recognition units process the image at its input and returns two parameters, a
probability p that a particular entity is present in the picture, and a vector T of pose coordinates

(Fig. 3: T =
[
x y

]�
). These values are passed on to the generation units, along with a vector

∆T that describes the change in pose (Fig. 3: T =
[
∆x ∆y

]�
). As a result, the generation

units create a new image from the visual entities and the new poses created from T and ∆T . The
contribution of each capsule to the generated output is determined by the presence probability
p.

It is known that the features extracted by convolutional neural networks become more complex
and expressive with increasing number of layers [47]. This due to the translationally equivariant
nature of convolutional filters as well as the fact that different semantic features appear in different
constellations throughout the training data. This is also the case for capsule neural networks but
the effect is reinforced by the additional pose information provided during the training process.

As an illustrating example, assume that we want to train a transforming autoencoder with
images of faces under different pose transformations. This kind of data is typically available and
readily labeled in publicly accessible datasets. During training, the output image would contain
the result of the change in pose. Different facial features such as mouth, ears, eyes or nose will
behave differently under a given pose transformation and thus be captured by different capsules.
The contribution of each capsule to the generation at the output of the transforming autoencoder
is determined by p. If the facial feature modeled by a capsule is absent from the image p should
be close to 0.

12

. As a result, the generation units
create a new image from the visual entities and the
new poses created from

Figure 3: Depiction of a capsule layer. Source: [35].

and generation units. Both kinds of units are realized via hidden convolutional layers. Fig. 3
depicts a capsule layer as described in [35]. In the transforming autoencoders introduced by
that work, the recognition units process the image at its input and returns two parameters, a
probability p that a particular entity is present in the picture, and a vector T of pose coordinates

(Fig. 3: T =
[
x y

]�
). These values are passed on to the generation units, along with a vector

∆T that describes the change in pose (Fig. 3: T =
[
∆x ∆y

]�
). As a result, the generation

units create a new image from the visual entities and the new poses created from T and ∆T . The
contribution of each capsule to the generated output is determined by the presence probability
p.

It is known that the features extracted by convolutional neural networks become more complex
and expressive with increasing number of layers [47]. This due to the translationally equivariant
nature of convolutional filters as well as the fact that different semantic features appear in different
constellations throughout the training data. This is also the case for capsule neural networks but
the effect is reinforced by the additional pose information provided during the training process.

As an illustrating example, assume that we want to train a transforming autoencoder with
images of faces under different pose transformations. This kind of data is typically available and
readily labeled in publicly accessible datasets. During training, the output image would contain
the result of the change in pose. Different facial features such as mouth, ears, eyes or nose will
behave differently under a given pose transformation and thus be captured by different capsules.
The contribution of each capsule to the generation at the output of the transforming autoencoder
is determined by p. If the facial feature modeled by a capsule is absent from the image p should
be close to 0.

12

 and

Figure 3: Depiction of a capsule layer. Source: [35].

and generation units. Both kinds of units are realized via hidden convolutional layers. Fig. 3
depicts a capsule layer as described in [35]. In the transforming autoencoders introduced by
that work, the recognition units process the image at its input and returns two parameters, a
probability p that a particular entity is present in the picture, and a vector T of pose coordinates

(Fig. 3: T =
[
x y

]�
). These values are passed on to the generation units, along with a vector

∆T that describes the change in pose (Fig. 3: T =
[
∆x ∆y

]�
). As a result, the generation

units create a new image from the visual entities and the new poses created from T and ∆T . The
contribution of each capsule to the generated output is determined by the presence probability
p.

It is known that the features extracted by convolutional neural networks become more complex
and expressive with increasing number of layers [47]. This due to the translationally equivariant
nature of convolutional filters as well as the fact that different semantic features appear in different
constellations throughout the training data. This is also the case for capsule neural networks but
the effect is reinforced by the additional pose information provided during the training process.

As an illustrating example, assume that we want to train a transforming autoencoder with
images of faces under different pose transformations. This kind of data is typically available and
readily labeled in publicly accessible datasets. During training, the output image would contain
the result of the change in pose. Different facial features such as mouth, ears, eyes or nose will
behave differently under a given pose transformation and thus be captured by different capsules.
The contribution of each capsule to the generation at the output of the transforming autoencoder
is determined by p. If the facial feature modeled by a capsule is absent from the image p should
be close to 0.

12

. The contri-
bution of each capsule to the generated) output is
determined by the presence probability

Figure 3: Depiction of a capsule layer. Source: [35].

and generation units. Both kinds of units are realized via hidden convolutional layers. Fig. 3
depicts a capsule layer as described in [35]. In the transforming autoencoders introduced by
that work, the recognition units process the image at its input and returns two parameters, a
probability p that a particular entity is present in the picture, and a vector T of pose coordinates

(Fig. 3: T =
[
x y

]�
). These values are passed on to the generation units, along with a vector

∆T that describes the change in pose (Fig. 3: T =
[
∆x ∆y

]�
). As a result, the generation

units create a new image from the visual entities and the new poses created from T and ∆T . The
contribution of each capsule to the generated output is determined by the presence probability
p.

It is known that the features extracted by convolutional neural networks become more complex
and expressive with increasing number of layers [47]. This due to the translationally equivariant
nature of convolutional filters as well as the fact that different semantic features appear in different
constellations throughout the training data. This is also the case for capsule neural networks but
the effect is reinforced by the additional pose information provided during the training process.

As an illustrating example, assume that we want to train a transforming autoencoder with
images of faces under different pose transformations. This kind of data is typically available and
readily labeled in publicly accessible datasets. During training, the output image would contain
the result of the change in pose. Different facial features such as mouth, ears, eyes or nose will
behave differently under a given pose transformation and thus be captured by different capsules.
The contribution of each capsule to the generation at the output of the transforming autoencoder
is determined by p. If the facial feature modeled by a capsule is absent from the image p should
be close to 0.

12

.

It is known that the features extracted by convolu-
tional neural networks become more complex and
expressive with increasing number of layers [47].
This is due to the translationally equivariant nature
of convolutional filters as well as the fact that di�er-
ent semantic features appear in di�erent constella-

tions throughout the training data. This is also the
case for capsule neural networks but the e�ect is
reinforced by the additional pose information pro-
vided during the training process.

As an illustrating example, assume that we want
to train a transforming autoencoder with images
of faces under di�erent pose transformations. This
kind of data is typically available and readily labe-
led in publicly accessible datasets. During training,
the output image would contain the result of the
change in pose. Di�erent facial features such as
mouth, ears, eyes or nose will behave di�erently
under a given pose transformation and thus be
captured by di�erent capsules. The contribution of
each capsule to the generation at the output of the
transforming autoencoder is determined by

Figure 3: Depiction of a capsule layer. Source: [35].

and generation units. Both kinds of units are realized via hidden convolutional layers. Fig. 3
depicts a capsule layer as described in [35]. In the transforming autoencoders introduced by
that work, the recognition units process the image at its input and returns two parameters, a
probability p that a particular entity is present in the picture, and a vector T of pose coordinates

(Fig. 3: T =
[
x y

]�
). These values are passed on to the generation units, along with a vector

∆T that describes the change in pose (Fig. 3: T =
[
∆x ∆y

]�
). As a result, the generation

units create a new image from the visual entities and the new poses created from T and ∆T . The
contribution of each capsule to the generated output is determined by the presence probability
p.

It is known that the features extracted by convolutional neural networks become more complex
and expressive with increasing number of layers [47]. This due to the translationally equivariant
nature of convolutional filters as well as the fact that different semantic features appear in different
constellations throughout the training data. This is also the case for capsule neural networks but
the effect is reinforced by the additional pose information provided during the training process.

As an illustrating example, assume that we want to train a transforming autoencoder with
images of faces under different pose transformations. This kind of data is typically available and
readily labeled in publicly accessible datasets. During training, the output image would contain
the result of the change in pose. Different facial features such as mouth, ears, eyes or nose will
behave differently under a given pose transformation and thus be captured by different capsules.
The contribution of each capsule to the generation at the output of the transforming autoencoder
is determined by p. If the facial feature modeled by a capsule is absent from the image p should
be close to 0.

12

. If the
facial feature modeled by a capsule is absent from
the image

Figure 3: Depiction of a capsule layer. Source: [35].

and generation units. Both kinds of units are realized via hidden convolutional layers. Fig. 3
depicts a capsule layer as described in [35]. In the transforming autoencoders introduced by
that work, the recognition units process the image at its input and returns two parameters, a
probability p that a particular entity is present in the picture, and a vector T of pose coordinates

(Fig. 3: T =
[
x y

]�
). These values are passed on to the generation units, along with a vector

∆T that describes the change in pose (Fig. 3: T =
[
∆x ∆y

]�
). As a result, the generation

units create a new image from the visual entities and the new poses created from T and ∆T . The
contribution of each capsule to the generated output is determined by the presence probability
p.

It is known that the features extracted by convolutional neural networks become more complex
and expressive with increasing number of layers [47]. This due to the translationally equivariant
nature of convolutional filters as well as the fact that different semantic features appear in different
constellations throughout the training data. This is also the case for capsule neural networks but
the effect is reinforced by the additional pose information provided during the training process.

As an illustrating example, assume that we want to train a transforming autoencoder with
images of faces under different pose transformations. This kind of data is typically available and
readily labeled in publicly accessible datasets. During training, the output image would contain
the result of the change in pose. Different facial features such as mouth, ears, eyes or nose will
behave differently under a given pose transformation and thus be captured by different capsules.
The contribution of each capsule to the generation at the output of the transforming autoencoder
is determined by p. If the facial feature modeled by a capsule is absent from the image p should
be close to 0.

12

 should be close to 0.

A capsule layer can be thus viewed as an archi-
tectural device to decompose the input into its
semantic components. Several capsule layers can
be stacked to capture features of increasing com-
plexity.

While capsule neural networks, like convolutional
nets are by design an instrument for visual data, it is
interesting how they incorporate di�erent data mo-
dalities into the learning process. Recent capsule
architectures are capable of combining euclidean
with symbolic representations. For instance, the
Stacked Capsule Autoencoder [44] decomposes
images into sets of objects and then uses set pro-
cessing methods to organize the sets into constel-
lations of objects.

x y

+∆y

p

+∆x

Actual output Target output

Input image

x y

+∆y+∆x

p
x y

+∆y+∆x

p

Figure 3: Depiction of a capsule layer. Source: [35].

15

Invariance in Di�erent Data Types

Neural Set Processing

Sets are one of the most fundamental non-euclide-
an data types. They appear in classical combinato-
rial problems that are known from theoretical com-
puter science, but also in fields like computer vision
in the form of, for instance, point clouds. As such,
they occupy a special position within non-euclidean
data as essentially all other practically relevant data
types can be derived from sets by adding additio-
nal structure. For instance, a word is a set of letters
equipped with an order, a graph is a set of nodes
equipped with a pairwise relational structure. Ma-
king neural networks capable of dealing with sets
thus potentially renders them applicable to all kinds
of data that can be derived from a set.

Unlike elements of a vector space, sets can be of
di�erent cardinalities and do not have a natural or-
der. To process sets, a neural network should thus be
able to handle inputs of di�erent sizes and be inva-
riant to permutations. This permutation invariance is
an elementary inductive bias in set processing and
must be considered both when neural networks pro-
cess sets as their input or return sets as their output.

Since recurrent neural networks (RNNs) can handle
sequences of di�erent lengths, they have also been
employed to process sets. In order to achieve per-
mutation invariance, attention has been used. For
instance, the work [79] describes a system where
an LSTM generates queries to compute attention
vectors from sets. The technique is employed for
combinatorial tasks such as sorting. However, pure-
ly feed-forward structures have also been used for
set processing, e.g. by generalizing the convolution
operation to sets [50].

An important theoretical result on permutation inva-
riance has been provided in [90]. Given a function

A capsule layer can be thus viewed as an architectural device to decompose the input into
its semantic components. Several capsule layers can be stacked to capture features of increasing
complexity.

While capsule neural networks, like convolutional nets are by design an instrument for visual
data, it is interesting how they incorporate different data modalities into the learning process.
Recent capsule architectures are capable of combining euclidean with symbolic representations.
For instance, the Stacked Capsule Autoencoder [44] decomposes images into sets of objects and
then uses set processing methods to organize the sets into constellations of objects.

4.2 Invariance in Different Data Types

4.2.1 Neural Set Processing

Sets are one of the most fundamental non-euclidean data types. They appear in classical combina-
torial problems that are known from theoretical computer science, but also in fields like computer
vision in the form of, for instance, point clouds. As such, they occupy a special position within
non-euclidean data as essentially all other practically relevant data types can be derived from sets
by adding additional structure. For instance, a word is a set of letters equipped with an order,
a graph is a set of nodes equipped with a pairwise relational structure. Making neural networks
capable of dealing with sets thus potentially renders them applicable to all kinds of data that
can be derived from a set.

Unlike elements of a vector space, sets can be of different cardinalities and do not have a
natural order. To process sets, a neural network should thus be able to handle inputs of different
sizes and be invariant to permutations. This permutation invariance is an elimentary inductive
bias in set processing and must be considered both when neural networks process sets as their
input or return sets as their output.

Since recurrent neural networks (RNNs) can handle sequences of different lengths, they have
also been employed to process sets. In order to achieve permutation invariance, attention has
been used. For instance, the work [79] describes a system where an LSTM generates queries to
compute attention vectors from sets. The technique is employed for combinatorial tasks such as
sorting. However, purely feed-forward structures have also been used for set processing, e.g. by
generalizing the convolution operation to sets [50].

An important theoretical result on permutation invariance has been provided in [90]. Given
a function

f : X → R,
X �→ f(X),

(12)

where X is the set of sets containing elements of a countable set X, it can be shown that f is
invariant to permutations of its argument, iff it can be written as

f(X) = ρ

(∑
x∈X

φ(x)

)
, (13)

with ρ : R → R and φ : X → R being appropriate transformations. This result provides an
easy-to-implement guideline in designing models for set processing.

Generally, attention is a popular approach in handling sets. The reason is that attention
modules can be used to implement functions of the form in Eq. (13) [48].

13

(12)

where

A capsule layer can be thus viewed as an architectural device to decompose the input into
its semantic components. Several capsule layers can be stacked to capture features of increasing
complexity.

While capsule neural networks, like convolutional nets are by design an instrument for visual
data, it is interesting how they incorporate different data modalities into the learning process.
Recent capsule architectures are capable of combining euclidean with symbolic representations.
For instance, the Stacked Capsule Autoencoder [44] decomposes images into sets of objects and
then uses set processing methods to organize the sets into constellations of objects.

4.2 Invariance in Different Data Types

4.2.1 Neural Set Processing

Sets are one of the most fundamental non-euclidean data types. They appear in classical combina-
torial problems that are known from theoretical computer science, but also in fields like computer
vision in the form of, for instance, point clouds. As such, they occupy a special position within
non-euclidean data as essentially all other practically relevant data types can be derived from sets
by adding additional structure. For instance, a word is a set of letters equipped with an order,
a graph is a set of nodes equipped with a pairwise relational structure. Making neural networks
capable of dealing with sets thus potentially renders them applicable to all kinds of data that
can be derived from a set.

Unlike elements of a vector space, sets can be of different cardinalities and do not have a
natural order. To process sets, a neural network should thus be able to handle inputs of different
sizes and be invariant to permutations. This permutation invariance is an elimentary inductive
bias in set processing and must be considered both when neural networks process sets as their
input or return sets as their output.

Since recurrent neural networks (RNNs) can handle sequences of different lengths, they have
also been employed to process sets. In order to achieve permutation invariance, attention has
been used. For instance, the work [79] describes a system where an LSTM generates queries to
compute attention vectors from sets. The technique is employed for combinatorial tasks such as
sorting. However, purely feed-forward structures have also been used for set processing, e.g. by
generalizing the convolution operation to sets [50].

An important theoretical result on permutation invariance has been provided in [90]. Given
a function

f : X → R,
X �→ f(X),

(12)

where X is the set of sets containing elements of a countable set X, it can be shown that f is
invariant to permutations of its argument, iff it can be written as

f(X) = ρ

(∑
x∈X

φ(x)

)
, (13)

with ρ : R → R and φ : X → R being appropriate transformations. This result provides an
easy-to-implement guideline in designing models for set processing.

Generally, attention is a popular approach in handling sets. The reason is that attention
modules can be used to implement functions of the form in Eq. (13) [48].

13

 is the set of sets containing elements of a
countable set

A capsule layer can be thus viewed as an architectural device to decompose the input into
its semantic components. Several capsule layers can be stacked to capture features of increasing
complexity.

While capsule neural networks, like convolutional nets are by design an instrument for visual
data, it is interesting how they incorporate different data modalities into the learning process.
Recent capsule architectures are capable of combining euclidean with symbolic representations.
For instance, the Stacked Capsule Autoencoder [44] decomposes images into sets of objects and
then uses set processing methods to organize the sets into constellations of objects.

4.2 Invariance in Different Data Types

4.2.1 Neural Set Processing

Sets are one of the most fundamental non-euclidean data types. They appear in classical combina-
torial problems that are known from theoretical computer science, but also in fields like computer
vision in the form of, for instance, point clouds. As such, they occupy a special position within
non-euclidean data as essentially all other practically relevant data types can be derived from sets
by adding additional structure. For instance, a word is a set of letters equipped with an order,
a graph is a set of nodes equipped with a pairwise relational structure. Making neural networks
capable of dealing with sets thus potentially renders them applicable to all kinds of data that
can be derived from a set.

Unlike elements of a vector space, sets can be of different cardinalities and do not have a
natural order. To process sets, a neural network should thus be able to handle inputs of different
sizes and be invariant to permutations. This permutation invariance is an elimentary inductive
bias in set processing and must be considered both when neural networks process sets as their
input or return sets as their output.

Since recurrent neural networks (RNNs) can handle sequences of different lengths, they have
also been employed to process sets. In order to achieve permutation invariance, attention has
been used. For instance, the work [79] describes a system where an LSTM generates queries to
compute attention vectors from sets. The technique is employed for combinatorial tasks such as
sorting. However, purely feed-forward structures have also been used for set processing, e.g. by
generalizing the convolution operation to sets [50].

An important theoretical result on permutation invariance has been provided in [90]. Given
a function

f : X → R,
X �→ f(X),

(12)

where X is the set of sets containing elements of a countable set X, it can be shown that f is
invariant to permutations of its argument, iff it can be written as

f(X) = ρ

(∑
x∈X

φ(x)

)
, (13)

with ρ : R → R and φ : X → R being appropriate transformations. This result provides an
easy-to-implement guideline in designing models for set processing.

Generally, attention is a popular approach in handling sets. The reason is that attention
modules can be used to implement functions of the form in Eq. (13) [48].

13

, it can be shown that

A capsule layer can be thus viewed as an architectural device to decompose the input into
its semantic components. Several capsule layers can be stacked to capture features of increasing
complexity.

While capsule neural networks, like convolutional nets are by design an instrument for visual
data, it is interesting how they incorporate different data modalities into the learning process.
Recent capsule architectures are capable of combining euclidean with symbolic representations.
For instance, the Stacked Capsule Autoencoder [44] decomposes images into sets of objects and
then uses set processing methods to organize the sets into constellations of objects.

4.2 Invariance in Different Data Types

4.2.1 Neural Set Processing

Sets are one of the most fundamental non-euclidean data types. They appear in classical combina-
torial problems that are known from theoretical computer science, but also in fields like computer
vision in the form of, for instance, point clouds. As such, they occupy a special position within
non-euclidean data as essentially all other practically relevant data types can be derived from sets
by adding additional structure. For instance, a word is a set of letters equipped with an order,
a graph is a set of nodes equipped with a pairwise relational structure. Making neural networks
capable of dealing with sets thus potentially renders them applicable to all kinds of data that
can be derived from a set.

Unlike elements of a vector space, sets can be of different cardinalities and do not have a
natural order. To process sets, a neural network should thus be able to handle inputs of different
sizes and be invariant to permutations. This permutation invariance is an elimentary inductive
bias in set processing and must be considered both when neural networks process sets as their
input or return sets as their output.

Since recurrent neural networks (RNNs) can handle sequences of different lengths, they have
also been employed to process sets. In order to achieve permutation invariance, attention has
been used. For instance, the work [79] describes a system where an LSTM generates queries to
compute attention vectors from sets. The technique is employed for combinatorial tasks such as
sorting. However, purely feed-forward structures have also been used for set processing, e.g. by
generalizing the convolution operation to sets [50].

An important theoretical result on permutation invariance has been provided in [90]. Given
a function

f : X → R,
X �→ f(X),

(12)

where X is the set of sets containing elements of a countable set X, it can be shown that f is
invariant to permutations of its argument, iff it can be written as

f(X) = ρ

(∑
x∈X

φ(x)

)
, (13)

with ρ : R → R and φ : X → R being appropriate transformations. This result provides an
easy-to-implement guideline in designing models for set processing.

Generally, attention is a popular approach in handling sets. The reason is that attention
modules can be used to implement functions of the form in Eq. (13) [48].

13

 is invariant
to permutations of its argument, if it can be written
as

A capsule layer can be thus viewed as an architectural device to decompose the input into
its semantic components. Several capsule layers can be stacked to capture features of increasing
complexity.

While capsule neural networks, like convolutional nets are by design an instrument for visual
data, it is interesting how they incorporate different data modalities into the learning process.
Recent capsule architectures are capable of combining euclidean with symbolic representations.
For instance, the Stacked Capsule Autoencoder [44] decomposes images into sets of objects and
then uses set processing methods to organize the sets into constellations of objects.

4.2 Invariance in Different Data Types

4.2.1 Neural Set Processing

Sets are one of the most fundamental non-euclidean data types. They appear in classical combina-
torial problems that are known from theoretical computer science, but also in fields like computer
vision in the form of, for instance, point clouds. As such, they occupy a special position within
non-euclidean data as essentially all other practically relevant data types can be derived from sets
by adding additional structure. For instance, a word is a set of letters equipped with an order,
a graph is a set of nodes equipped with a pairwise relational structure. Making neural networks
capable of dealing with sets thus potentially renders them applicable to all kinds of data that
can be derived from a set.

Unlike elements of a vector space, sets can be of different cardinalities and do not have a
natural order. To process sets, a neural network should thus be able to handle inputs of different
sizes and be invariant to permutations. This permutation invariance is an elimentary inductive
bias in set processing and must be considered both when neural networks process sets as their
input or return sets as their output.

Since recurrent neural networks (RNNs) can handle sequences of different lengths, they have
also been employed to process sets. In order to achieve permutation invariance, attention has
been used. For instance, the work [79] describes a system where an LSTM generates queries to
compute attention vectors from sets. The technique is employed for combinatorial tasks such as
sorting. However, purely feed-forward structures have also been used for set processing, e.g. by
generalizing the convolution operation to sets [50].

An important theoretical result on permutation invariance has been provided in [90]. Given
a function

f : X → R,
X �→ f(X),

(12)

where X is the set of sets containing elements of a countable set X, it can be shown that f is
invariant to permutations of its argument, iff it can be written as

f(X) = ρ

(∑
x∈X

φ(x)

)
, (13)

with ρ : R → R and φ : X → R being appropriate transformations. This result provides an
easy-to-implement guideline in designing models for set processing.

Generally, attention is a popular approach in handling sets. The reason is that attention
modules can be used to implement functions of the form in Eq. (13) [48].

13

(13)

with

A capsule layer can be thus viewed as an architectural device to decompose the input into
its semantic components. Several capsule layers can be stacked to capture features of increasing
complexity.

While capsule neural networks, like convolutional nets are by design an instrument for visual
data, it is interesting how they incorporate different data modalities into the learning process.
Recent capsule architectures are capable of combining euclidean with symbolic representations.
For instance, the Stacked Capsule Autoencoder [44] decomposes images into sets of objects and
then uses set processing methods to organize the sets into constellations of objects.

4.2 Invariance in Different Data Types

4.2.1 Neural Set Processing

Sets are one of the most fundamental non-euclidean data types. They appear in classical combina-
torial problems that are known from theoretical computer science, but also in fields like computer
vision in the form of, for instance, point clouds. As such, they occupy a special position within
non-euclidean data as essentially all other practically relevant data types can be derived from sets
by adding additional structure. For instance, a word is a set of letters equipped with an order,
a graph is a set of nodes equipped with a pairwise relational structure. Making neural networks
capable of dealing with sets thus potentially renders them applicable to all kinds of data that
can be derived from a set.

Unlike elements of a vector space, sets can be of different cardinalities and do not have a
natural order. To process sets, a neural network should thus be able to handle inputs of different
sizes and be invariant to permutations. This permutation invariance is an elimentary inductive
bias in set processing and must be considered both when neural networks process sets as their
input or return sets as their output.

Since recurrent neural networks (RNNs) can handle sequences of different lengths, they have
also been employed to process sets. In order to achieve permutation invariance, attention has
been used. For instance, the work [79] describes a system where an LSTM generates queries to
compute attention vectors from sets. The technique is employed for combinatorial tasks such as
sorting. However, purely feed-forward structures have also been used for set processing, e.g. by
generalizing the convolution operation to sets [50].

An important theoretical result on permutation invariance has been provided in [90]. Given
a function

f : X → R,
X �→ f(X),

(12)

where X is the set of sets containing elements of a countable set X, it can be shown that f is
invariant to permutations of its argument, iff it can be written as

f(X) = ρ

(∑
x∈X

φ(x)

)
, (13)

with ρ : R → R and φ : X → R being appropriate transformations. This result provides an
easy-to-implement guideline in designing models for set processing.

Generally, attention is a popular approach in handling sets. The reason is that attention
modules can be used to implement functions of the form in Eq. (13) [48].

13

 and

A capsule layer can be thus viewed as an architectural device to decompose the input into
its semantic components. Several capsule layers can be stacked to capture features of increasing
complexity.

While capsule neural networks, like convolutional nets are by design an instrument for visual
data, it is interesting how they incorporate different data modalities into the learning process.
Recent capsule architectures are capable of combining euclidean with symbolic representations.
For instance, the Stacked Capsule Autoencoder [44] decomposes images into sets of objects and
then uses set processing methods to organize the sets into constellations of objects.

4.2 Invariance in Different Data Types

4.2.1 Neural Set Processing

Sets are one of the most fundamental non-euclidean data types. They appear in classical combina-
torial problems that are known from theoretical computer science, but also in fields like computer
vision in the form of, for instance, point clouds. As such, they occupy a special position within
non-euclidean data as essentially all other practically relevant data types can be derived from sets
by adding additional structure. For instance, a word is a set of letters equipped with an order,
a graph is a set of nodes equipped with a pairwise relational structure. Making neural networks
capable of dealing with sets thus potentially renders them applicable to all kinds of data that
can be derived from a set.

Unlike elements of a vector space, sets can be of different cardinalities and do not have a
natural order. To process sets, a neural network should thus be able to handle inputs of different
sizes and be invariant to permutations. This permutation invariance is an elimentary inductive
bias in set processing and must be considered both when neural networks process sets as their
input or return sets as their output.

Since recurrent neural networks (RNNs) can handle sequences of different lengths, they have
also been employed to process sets. In order to achieve permutation invariance, attention has
been used. For instance, the work [79] describes a system where an LSTM generates queries to
compute attention vectors from sets. The technique is employed for combinatorial tasks such as
sorting. However, purely feed-forward structures have also been used for set processing, e.g. by
generalizing the convolution operation to sets [50].

An important theoretical result on permutation invariance has been provided in [90]. Given
a function

f : X → R,
X �→ f(X),

(12)

where X is the set of sets containing elements of a countable set X, it can be shown that f is
invariant to permutations of its argument, iff it can be written as

f(X) = ρ

(∑
x∈X

φ(x)

)
, (13)

with ρ : R → R and φ : X → R being appropriate transformations. This result provides an
easy-to-implement guideline in designing models for set processing.

Generally, attention is a popular approach in handling sets. The reason is that attention
modules can be used to implement functions of the form in Eq. (13) [48].

13

 being appropriate
transformations. This result provides an easy-to-im-
plement guideline in designing models for set pro-
cessing.

Generally, attention is a popular approach in hand-
ling sets. The reason is that attention modules can
be used to implement functions of the form in
Eq. (13) [48].

Graph Neural Networks

Like sets, graphs generalizes euclidean data types
and at the same type can be used to describe a va-
riety of knowledge representations, such as social
networks, multi-view images or molecule structu-
res. The survey [85] provides a comprehensive over-
view over the recent trends in Graph Neural Nets
(GNN). A GNN can refer both to an intra-graph fra-
mework, that operates on a node or edge level, e.g.
for segmenting a graph into semantically distinct
clusters, as well as an inter-graph framework, that,
for example, performs classification of adjacency
matrices. Overall, intra-graph frameworks are less
common. A noteworthy example is [41] that pre-
sents a semi-supervised classification architecture
that operates on partially labeled graph nodes.

Graph neural networks have been realized both by
recurrent and feed-forward architectures.

• Recurrent GNNs typically process each
node by a recurrent unit such as a Long-term
Short Memory (LSTM) or a Gate Recurrent Unit
(GRU). Each unit receives inputs from the units
corresponding to its neighboring nodes. Works
in this category, such as [13] or [51] belong to
the pioneering approaches of GNNs [85].

• Convolutional GNNs aim at generalizing the
concept of convolutions from signals defi-
ned on regular grids to signals on graphs. 2D
images, for instance, can be viewed as a special
case of graphs, where each pixel is described
by a node and the neighboring pixels constitute
the neighborhood of adjacent nodes. Graph
convolutions, like regular ones, can be carried
out in the spatial [57, 87, 78] and the spectral
domain [11, 49, 41], by applying an appropriate
transform of the graph data. One important
question of ongoing research in the context of
Convolutional GNNs is the design of appropria-
te pooling layers [19].

• Similarly, attention based mechanisms have also
been employed [77].

GNNs have been widely applied to non-supervised
learning tasks, such as graph embedding [63] and
graph generation [10].

16

Group Action Symmetries

As we have seen, considerable e�ort is put into ge-
neralizing convolutions to data structures such as
graphs, sets or manifolds. This is not without a rea-
son. Weight sharing in convolutional layers of deep
networks without doubt provides a strong prior for
the most common deep learning applications [74].
While it is not entirely understood what exactly it
is about convolutional neural nets that make them
capture the essential information from visual data,
robustness towards certain transformations seem to
play an important role in it [53]. Most prominently,
convolutions are equivariant to spatial translations,
which is advantageous for visual data, as transla-
tions typically have little impact on the semantic
content of an image.

However, if we want to apply deep learning as suc-
cessfully to non-image inputs, we need to general-
ize these kinds of symmetries to more exotic types
of data which turns out to be tricky. Nevertheless,
some theoretical results on this matter have been
presented in [66]. Specifically, the work discusses
how parameter sharing induces equivariances with
respect to some exemplary group operations on
the input, such as rotations and permutations. Later,
the work [43] has claimed some stronger results, by
showing that a convolutional structure is not only a
su�cient, but also a necessary condition for equiva-
riance with respect to certain group actions.

17

Recent Trends in Learning Paradigms

Meta-Learning

Meta-Learning refers to a class of approaches in
predominantly supervised learning settings that
can be vaguely described as “learning to learn” [21].
Traditional supervised learning problems are typi-
cally formulated in terms of training data and test
data, where the training data is used to optimize a
parameterized function for classifying or regressing
test data samples that are assumed to be su�cient-
ly similar to the training data in terms of labeling
and statistics. By contrast, in meta-learning, once
a model has been trained, it is not directly used to
predict labels of unseen data samples, but rather to
once again learn the prediction on a small unseen
data-set. This field of study has considerable overlap
with few-shot classification [89, 80].

Meta-learning problems are often framed in terms
of support sets and query sets. A training set

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

(14)

contains

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

 pairs of support and vector sets. A
meta-learning framework uses

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

 to generate a
deep learning model that can be easily trained on
the support set of a new, unseen pair

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

,
such that it generalizes to the samples in

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

, even
when the number of samples in

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

 is small, and,
in the case of classification, contains classes that
have not been observed in the training set. It is rea-
sonable to assume that for any support/query pair
the probability distributions from which the samples
have been drawn are the same for the support and
the query set. For classification problems, the same
holds for the classes that should coincide for the
support and query set of one

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

-pair, but not
necessarily across all pairs. Since training is per-
formed twice, in the following, we refer to the first
stage of training, i.e. on

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

, as training, and the
second stage, i.e. on

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

 as adaptation.

Typically, the models are parameterized by a
task-general parameter vector

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

 and a parameter
vector

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

 that is specific to one particular support/
query set pair

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

. The aim of meta-learning is
to use

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

 to learn a

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

 that is as general as pos-
sible, such that inferring

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

 from a new, unseen
support set

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

 requires as little e�ort and data as
possible (fast adaptation).

In [88], three types of meta-learning approaches
have been identified. Metric-based methods learn
an embedding space parameterized by

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

 in which
the classes are well separated across all of

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

w.r.t. some distance measure. An additional, simple

proximity-based classifier parameterized by

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

 is
learned jointly for each

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

. Recent
examples of this type of meta-learning models are
[89, 60] and [73].

Gradient-based methods minimize a measure of
expected non-optimality, such that adaptation re-
quires only few small gradient steps. Prominent ex-
amples include [22, 88] as well as [31] and [2].

The more recent class of Amortization methods re-
lies on inference networks that predict the task-spe-
cific parameters

4.3 Recent Trends in Learning Paradigms

4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains

15

 [30].

Additionally, to these three classes, remarkably
many meta-learning mechanisms rely on recurrent
models, since meta-learning can be phrased as a
sequence-to-sequence problem [67, 56]

Self-supervised Learning

Supervised learning gives us the means to solve
tasks for which labels are available in su�cient
quantities and variations. However, the acquisition
of the required annotations is usually associated
with great e�ort and high costs. Meanwhile, a lot of
information in the data remains unexploited, labels
that are basically free. In contrast, self-supervised
methods try to exploit this untapped potential. Self-
supervised learning is an important tool in training
skill-invariant models. Since data is not assumed to
be consistently labeled, the model is not trained
with a specific task in mind.

The general goal is to learn how to encode objects,
such as words, images, audio snippets, graphs, etc.,
into representations that contain the essential infor-
mation in a condensed form and, thus, can be used
to e�ciently solve multiple downstream tasks. To
achieve this goal, self-supervised methods formula-
te tasks for which the labels are automatically provi-
ded instead of relying on human-annotated labels.
Typically, the performance on this self-supervised
task, often called pretext task, is not important. The
actual goal is that the intermediate representations
of the trained model encode high-level semantic
information. The challenge is to design this pretext
task in such a way that high-level understanding is
necessary to solve it. One class of self-supervised
methods formulates the objective as a prediction
task, where a hidden part of the input must be deri-
ved from other parts. This objective comes in many
flavors, such as predicting a word in a sentence
from context [55], [18], inpainting [62], colorization
[93] or predicting future frames in a video which will
be accessible in subsequent time steps [72].

18

Another class of methods solves prediction tasks
in learned representation spaces; for example, the
relative localization of patches [20], [58], the natural
orientation of images [27] or the geometric trans-
formation between images [1], [91], [92]. The poten-
tial advantages of the latter techniques are that they
have access to the entire input and do not have to
learn details at the image level that are irrelevant for
understanding image semantics.

In a broader sense, generative models like auto-
encoders and generative adversarial networks [28]
can be considered self-supervised. However, while
the focus of generative models is typically to create
realistic and diverse samples, the goal of self-super-
vised learning is to extract meaningful information
from data. For a broader overview of self-supervised
learning we refer the reader to a recent study [38].

Metric Learning

Since systems that are invariant to the data distri-
bution can not rely on solely inferring the training
data statistics, distance and metric learning [84], has
gained considerable importance in the last years.

Deep metric learning employ deep neural nets to
construct an embedding of the data in which the
Euclidean distance reflects actual semantic (dis-)
similarity between data points. Learning a distance
can substitute learning a function

unexploited, labels that are basically free. In contrast, self-supervised methods try to exploit
this untapped potential. Self-supervised learning is an important tool in training skill-invariant
models. Since data is not assumed to be consistently labeled, the model is not trained with a
specific task in mind.

The general goal is to learn how to encode objects, such as words, images, audio snippets,
graphs, etc., into representations that contain the essential information in a condensed form
and, thus, can be used to efficiently solve multiple downstream tasks. To achieve this goal, self-
supervised methods formulate tasks for which the labels are automatically provided instead of
relying on human-annotated labels. Typically, the performance on this self-supervised task, often
called pretext task, is not important. The actual goal is that the intermediate representations of
the trained model encode high-level semantic information. The challenge is to design this pretext
task in such a way that high-level understanding is necessary to solve it.

One class of self-supervised methods formulates the objective as a prediction task, where a
hidden part of the input must be derived from other parts. This objective comes in many flavors,
such as predicting a word in a sentence from context [55], [18], inpainting [62], colorization [93]
or predicting future frames in a video which will be accessible in subsequent time steps [72].

Another class of methods solves prediction tasks in learned representation spaces; for example,
the relative localization of patches [20], [58], the natural orientation of images [27] or the geometric
transformation between images [1], [91], [92]. The potential advantages of the latter techniques
are that they have access to the entire input and do not have to learn details at the image level
that are irrelevant for understanding image semantics.

In a broader sense, generative models like autoencoders and generative adversarial networks
[28] can be considered self-supervised. However, while the focus of generative models is typically
to create realistic and diverse samples, the goal of self-supervised learning is to extract meaningful
information from data. For a broader overview of self-supervised learning we refer the reader to
a recent study [38].

4.3.3 Metric Learning

Since systems that are invariant to the data distribution can not rely on solely inferring the
training data statistics, distance and metric learning [84], has gained considerable importance in
the last years.

Deep metric learning employ deep neural nets to construct in embedding of the data in which
the Euclidean distance reflects actual semantic (dis-)similarity between data points. Learning a
distance can substitute learning a function fθ as described in Section 2.1.1 in order to become
more skill- invariant and distribution-invariant. For instance, instead of learning a function that
classifies samples, we can learn a metric, and use a simple distance-based classifier, e.g. k Nearest
Neighbors on top, which permits us to neglect the joint probability between the data samples
and the labels and rather focus on whether we can capture any semantically meaningful notion
of similarity. Additionally, we can employ it for a larger variety of task than mere classification,
e.g. clustering or content-based retrieval.

An important approach to metric learning is by contrastive embedding. This strategy aims
at penalizing pairs of data samples from the same class that are too far apart, as well as pairs
of samples from different classes that are too close together. In [33], this aim is formalized as
follows. Let xi and xj be two samples from the training data set Xtrain and yi,j a label that is 0

16

 as described in
Section 2.1.1 in order to become more skill- invari-
ant and distribution-invariant. For instance, instead
of learning a function that classifies samples, we
can learn a metric, and use a simple distance-based
classifier, e.g.

unexploited, labels that are basically free. In contrast, self-supervised methods try to exploit
this untapped potential. Self-supervised learning is an important tool in training skill-invariant
models. Since data is not assumed to be consistently labeled, the model is not trained with a
specific task in mind.

The general goal is to learn how to encode objects, such as words, images, audio snippets,
graphs, etc., into representations that contain the essential information in a condensed form
and, thus, can be used to efficiently solve multiple downstream tasks. To achieve this goal, self-
supervised methods formulate tasks for which the labels are automatically provided instead of
relying on human-annotated labels. Typically, the performance on this self-supervised task, often
called pretext task, is not important. The actual goal is that the intermediate representations of
the trained model encode high-level semantic information. The challenge is to design this pretext
task in such a way that high-level understanding is necessary to solve it.

One class of self-supervised methods formulates the objective as a prediction task, where a
hidden part of the input must be derived from other parts. This objective comes in many flavors,
such as predicting a word in a sentence from context [55], [18], inpainting [62], colorization [93]
or predicting future frames in a video which will be accessible in subsequent time steps [72].

Another class of methods solves prediction tasks in learned representation spaces; for example,
the relative localization of patches [20], [58], the natural orientation of images [27] or the geometric
transformation between images [1], [91], [92]. The potential advantages of the latter techniques
are that they have access to the entire input and do not have to learn details at the image level
that are irrelevant for understanding image semantics.

In a broader sense, generative models like autoencoders and generative adversarial networks
[28] can be considered self-supervised. However, while the focus of generative models is typically
to create realistic and diverse samples, the goal of self-supervised learning is to extract meaningful
information from data. For a broader overview of self-supervised learning we refer the reader to
a recent study [38].

4.3.3 Metric Learning

Since systems that are invariant to the data distribution can not rely on solely inferring the
training data statistics, distance and metric learning [84], has gained considerable importance in
the last years.

Deep metric learning employ deep neural nets to construct in embedding of the data in which
the Euclidean distance reflects actual semantic (dis-)similarity between data points. Learning a
distance can substitute learning a function fθ as described in Section 2.1.1 in order to become
more skill- invariant and distribution-invariant. For instance, instead of learning a function that
classifies samples, we can learn a metric, and use a simple distance-based classifier, e.g. k Nearest
Neighbors on top, which permits us to neglect the joint probability between the data samples
and the labels and rather focus on whether we can capture any semantically meaningful notion
of similarity. Additionally, we can employ it for a larger variety of task than mere classification,
e.g. clustering or content-based retrieval.

An important approach to metric learning is by contrastive embedding. This strategy aims
at penalizing pairs of data samples from the same class that are too far apart, as well as pairs
of samples from different classes that are too close together. In [33], this aim is formalized as
follows. Let xi and xj be two samples from the training data set Xtrain and yi,j a label that is 0

16

 Nearest Neighbors on top, which
permits us to neglect the joint probability between
the data samples and the labels and rather focus on
whether we can capture any semantically meaning-
ful notion of similarity. Additionally, we can employ
it for a larger variety of tasks than mere classifica-
tion, e.g. clustering or content-based retrieval.

An important approach to metric learning is by con-
trastive embedding. This strategy aims at penalizing
pairs of data samples from the same class that are
too far apart, as well as pairs of samples from di�er-
ent classes that are too close together. In [33], this
aim is formalized as follows. Let

unexploited, labels that are basically free. In contrast, self-supervised methods try to exploit
this untapped potential. Self-supervised learning is an important tool in training skill-invariant
models. Since data is not assumed to be consistently labeled, the model is not trained with a
specific task in mind.

The general goal is to learn how to encode objects, such as words, images, audio snippets,
graphs, etc., into representations that contain the essential information in a condensed form
and, thus, can be used to efficiently solve multiple downstream tasks. To achieve this goal, self-
supervised methods formulate tasks for which the labels are automatically provided instead of
relying on human-annotated labels. Typically, the performance on this self-supervised task, often
called pretext task, is not important. The actual goal is that the intermediate representations of
the trained model encode high-level semantic information. The challenge is to design this pretext
task in such a way that high-level understanding is necessary to solve it.

One class of self-supervised methods formulates the objective as a prediction task, where a
hidden part of the input must be derived from other parts. This objective comes in many flavors,
such as predicting a word in a sentence from context [55], [18], inpainting [62], colorization [93]
or predicting future frames in a video which will be accessible in subsequent time steps [72].

Another class of methods solves prediction tasks in learned representation spaces; for example,
the relative localization of patches [20], [58], the natural orientation of images [27] or the geometric
transformation between images [1], [91], [92]. The potential advantages of the latter techniques
are that they have access to the entire input and do not have to learn details at the image level
that are irrelevant for understanding image semantics.

In a broader sense, generative models like autoencoders and generative adversarial networks
[28] can be considered self-supervised. However, while the focus of generative models is typically
to create realistic and diverse samples, the goal of self-supervised learning is to extract meaningful
information from data. For a broader overview of self-supervised learning we refer the reader to
a recent study [38].

4.3.3 Metric Learning

Since systems that are invariant to the data distribution can not rely on solely inferring the
training data statistics, distance and metric learning [84], has gained considerable importance in
the last years.

Deep metric learning employ deep neural nets to construct in embedding of the data in which
the Euclidean distance reflects actual semantic (dis-)similarity between data points. Learning a
distance can substitute learning a function fθ as described in Section 2.1.1 in order to become
more skill- invariant and distribution-invariant. For instance, instead of learning a function that
classifies samples, we can learn a metric, and use a simple distance-based classifier, e.g. k Nearest
Neighbors on top, which permits us to neglect the joint probability between the data samples
and the labels and rather focus on whether we can capture any semantically meaningful notion
of similarity. Additionally, we can employ it for a larger variety of task than mere classification,
e.g. clustering or content-based retrieval.

An important approach to metric learning is by contrastive embedding. This strategy aims
at penalizing pairs of data samples from the same class that are too far apart, as well as pairs
of samples from different classes that are too close together. In [33], this aim is formalized as
follows. Let xi and xj be two samples from the training data set Xtrain and yi,j a label that is 0

16

 and

unexploited, labels that are basically free. In contrast, self-supervised methods try to exploit
this untapped potential. Self-supervised learning is an important tool in training skill-invariant
models. Since data is not assumed to be consistently labeled, the model is not trained with a
specific task in mind.

The general goal is to learn how to encode objects, such as words, images, audio snippets,
graphs, etc., into representations that contain the essential information in a condensed form
and, thus, can be used to efficiently solve multiple downstream tasks. To achieve this goal, self-
supervised methods formulate tasks for which the labels are automatically provided instead of
relying on human-annotated labels. Typically, the performance on this self-supervised task, often
called pretext task, is not important. The actual goal is that the intermediate representations of
the trained model encode high-level semantic information. The challenge is to design this pretext
task in such a way that high-level understanding is necessary to solve it.

One class of self-supervised methods formulates the objective as a prediction task, where a
hidden part of the input must be derived from other parts. This objective comes in many flavors,
such as predicting a word in a sentence from context [55], [18], inpainting [62], colorization [93]
or predicting future frames in a video which will be accessible in subsequent time steps [72].

Another class of methods solves prediction tasks in learned representation spaces; for example,
the relative localization of patches [20], [58], the natural orientation of images [27] or the geometric
transformation between images [1], [91], [92]. The potential advantages of the latter techniques
are that they have access to the entire input and do not have to learn details at the image level
that are irrelevant for understanding image semantics.

In a broader sense, generative models like autoencoders and generative adversarial networks
[28] can be considered self-supervised. However, while the focus of generative models is typically
to create realistic and diverse samples, the goal of self-supervised learning is to extract meaningful
information from data. For a broader overview of self-supervised learning we refer the reader to
a recent study [38].

4.3.3 Metric Learning

Since systems that are invariant to the data distribution can not rely on solely inferring the
training data statistics, distance and metric learning [84], has gained considerable importance in
the last years.

Deep metric learning employ deep neural nets to construct in embedding of the data in which
the Euclidean distance reflects actual semantic (dis-)similarity between data points. Learning a
distance can substitute learning a function fθ as described in Section 2.1.1 in order to become
more skill- invariant and distribution-invariant. For instance, instead of learning a function that
classifies samples, we can learn a metric, and use a simple distance-based classifier, e.g. k Nearest
Neighbors on top, which permits us to neglect the joint probability between the data samples
and the labels and rather focus on whether we can capture any semantically meaningful notion
of similarity. Additionally, we can employ it for a larger variety of task than mere classification,
e.g. clustering or content-based retrieval.

An important approach to metric learning is by contrastive embedding. This strategy aims
at penalizing pairs of data samples from the same class that are too far apart, as well as pairs
of samples from different classes that are too close together. In [33], this aim is formalized as
follows. Let xi and xj be two samples from the training data set Xtrain and yi,j a label that is 0

16

 be two
samples from the training data set

unexploited, labels that are basically free. In contrast, self-supervised methods try to exploit
this untapped potential. Self-supervised learning is an important tool in training skill-invariant
models. Since data is not assumed to be consistently labeled, the model is not trained with a
specific task in mind.

The general goal is to learn how to encode objects, such as words, images, audio snippets,
graphs, etc., into representations that contain the essential information in a condensed form
and, thus, can be used to efficiently solve multiple downstream tasks. To achieve this goal, self-
supervised methods formulate tasks for which the labels are automatically provided instead of
relying on human-annotated labels. Typically, the performance on this self-supervised task, often
called pretext task, is not important. The actual goal is that the intermediate representations of
the trained model encode high-level semantic information. The challenge is to design this pretext
task in such a way that high-level understanding is necessary to solve it.

One class of self-supervised methods formulates the objective as a prediction task, where a
hidden part of the input must be derived from other parts. This objective comes in many flavors,
such as predicting a word in a sentence from context [55], [18], inpainting [62], colorization [93]
or predicting future frames in a video which will be accessible in subsequent time steps [72].

Another class of methods solves prediction tasks in learned representation spaces; for example,
the relative localization of patches [20], [58], the natural orientation of images [27] or the geometric
transformation between images [1], [91], [92]. The potential advantages of the latter techniques
are that they have access to the entire input and do not have to learn details at the image level
that are irrelevant for understanding image semantics.

In a broader sense, generative models like autoencoders and generative adversarial networks
[28] can be considered self-supervised. However, while the focus of generative models is typically
to create realistic and diverse samples, the goal of self-supervised learning is to extract meaningful
information from data. For a broader overview of self-supervised learning we refer the reader to
a recent study [38].

4.3.3 Metric Learning

Since systems that are invariant to the data distribution can not rely on solely inferring the
training data statistics, distance and metric learning [84], has gained considerable importance in
the last years.

Deep metric learning employ deep neural nets to construct in embedding of the data in which
the Euclidean distance reflects actual semantic (dis-)similarity between data points. Learning a
distance can substitute learning a function fθ as described in Section 2.1.1 in order to become
more skill- invariant and distribution-invariant. For instance, instead of learning a function that
classifies samples, we can learn a metric, and use a simple distance-based classifier, e.g. k Nearest
Neighbors on top, which permits us to neglect the joint probability between the data samples
and the labels and rather focus on whether we can capture any semantically meaningful notion
of similarity. Additionally, we can employ it for a larger variety of task than mere classification,
e.g. clustering or content-based retrieval.

An important approach to metric learning is by contrastive embedding. This strategy aims
at penalizing pairs of data samples from the same class that are too far apart, as well as pairs
of samples from different classes that are too close together. In [33], this aim is formalized as
follows. Let xi and xj be two samples from the training data set Xtrain and yi,j a label that is 0

16

 and

unexploited, labels that are basically free. In contrast, self-supervised methods try to exploit
this untapped potential. Self-supervised learning is an important tool in training skill-invariant
models. Since data is not assumed to be consistently labeled, the model is not trained with a
specific task in mind.

The general goal is to learn how to encode objects, such as words, images, audio snippets,
graphs, etc., into representations that contain the essential information in a condensed form
and, thus, can be used to efficiently solve multiple downstream tasks. To achieve this goal, self-
supervised methods formulate tasks for which the labels are automatically provided instead of
relying on human-annotated labels. Typically, the performance on this self-supervised task, often
called pretext task, is not important. The actual goal is that the intermediate representations of
the trained model encode high-level semantic information. The challenge is to design this pretext
task in such a way that high-level understanding is necessary to solve it.

One class of self-supervised methods formulates the objective as a prediction task, where a
hidden part of the input must be derived from other parts. This objective comes in many flavors,
such as predicting a word in a sentence from context [55], [18], inpainting [62], colorization [93]
or predicting future frames in a video which will be accessible in subsequent time steps [72].

Another class of methods solves prediction tasks in learned representation spaces; for example,
the relative localization of patches [20], [58], the natural orientation of images [27] or the geometric
transformation between images [1], [91], [92]. The potential advantages of the latter techniques
are that they have access to the entire input and do not have to learn details at the image level
that are irrelevant for understanding image semantics.

In a broader sense, generative models like autoencoders and generative adversarial networks
[28] can be considered self-supervised. However, while the focus of generative models is typically
to create realistic and diverse samples, the goal of self-supervised learning is to extract meaningful
information from data. For a broader overview of self-supervised learning we refer the reader to
a recent study [38].

4.3.3 Metric Learning

Since systems that are invariant to the data distribution can not rely on solely inferring the
training data statistics, distance and metric learning [84], has gained considerable importance in
the last years.

Deep metric learning employ deep neural nets to construct in embedding of the data in which
the Euclidean distance reflects actual semantic (dis-)similarity between data points. Learning a
distance can substitute learning a function fθ as described in Section 2.1.1 in order to become
more skill- invariant and distribution-invariant. For instance, instead of learning a function that
classifies samples, we can learn a metric, and use a simple distance-based classifier, e.g. k Nearest
Neighbors on top, which permits us to neglect the joint probability between the data samples
and the labels and rather focus on whether we can capture any semantically meaningful notion
of similarity. Additionally, we can employ it for a larger variety of task than mere classification,
e.g. clustering or content-based retrieval.

An important approach to metric learning is by contrastive embedding. This strategy aims
at penalizing pairs of data samples from the same class that are too far apart, as well as pairs
of samples from different classes that are too close together. In [33], this aim is formalized as
follows. Let xi and xj be two samples from the training data set Xtrain and yi,j a label that is 0

16

 a
label that is 0 if the pair is deemed similar and 1 oth-
erwise. This yields the loss function

if the pair is deemed similar and 1 otherwise. This yields the loss function

Lc(θ) =
1

2

∑
i,j,i �=j

(1− yi,j)‖fθ(xi)− fθ(xj)‖2 + yi,j max(0,m− ‖fθ(xi)− fθ(xj)‖)2, (15)

where m > 0 is a threshold value. Contrastive embedding has been successfully applied to
learning similarity of interior design images [6].

Alternatively triplet loss chooses three samples xa,xp,xn where xp (positive) is assumed to
be similar to xa and (anchor) and xn (negative is assumed to be dissimilar from it). Based on
these assumptions, the loss function

Lt(θ) =
∑
i

max(0, ‖fθ(xa
i)− fθ(x

p
i)‖

2 − ‖fθ(xa
i)− fθ(x

n
i)‖2 −m), (16)

where m is again a threshold, is constructed, based on a sufficient number of triplets xa
i ,x

p
i ,x

n
i .

Triplet loss has been successfully employed to face recognition tasks [70], among others.
More recent works propose more sophisticated loss functions, e.g. Lifted Structured Feature

Embedding [59], Multi-class n-pair loss [71] or angular loss [82].

5 Conclusion

Knowledge can be expected to play a key role in deep learning and AI developments of the years to
come. Many works have investigated the concept of knowledge by emphasizing its interpretation
as domain or expert knowledge and developing methods that infuse complementary, problem-
specific insights into general-purpose machine learning algorithms. The research questions this
type of works tries to answer usually relate to adapting a given model to a specific problem or
situation.

By contrast, many recent trends in machine learning research put the machine learning models
themselves at the center of interest, rather than the diverse application scenarios they can be
applied to. This shifts the focus from adaptation to adaptability, and to the challenge of designing
the models in a way such that the effort involved in adapting them can be minimized.

Motivated by these developments, we conclude that the decisive facet of knowledge in advanc-
ing the field is that of invariance. Not incidentally, it coincides with definitions from knowledge
management. Invariance can refer to different aspects of a machine learning model and, on a
low-level, is already a design principle of well-established neural architectures. However, in order
to interpret, process, represent or generate knowledge with machine learning, we need to achieve
invariance in a broader and more abstract sense. This is a gradual process as there is no clear
boundary at which invariance of skill, distribution or syntax is achieved.

As machine learning models become increasingly invariant, one expects to achieve and enhance
the following properties of future industrial and societal developments.

• Small data size: One fundamental challenge in real-world application is that the size of
data available for training an appropriate machine learning model is often too small. This
is an obstacle researchers and practitioners face all too often, in particular when they need
to apply their model to real-world problems where gathering and annotating data is costly
and publicly available datasets do not exist. By leveraging the advantage of capturing or

17

if the pair is deemed similar and 1 otherwise. This yields the loss function

Lc(θ) =
1

2

∑
i,j,i�=j

(1− yi,j)‖fθ(xi)− fθ(xj)‖2 + yi,j max(0,m− ‖fθ(xi)− fθ(xj)‖)2, (15)

where m > 0 is a threshold value. Contrastive embedding has been successfully applied to
learning similarity of interior design images [6].

Alternatively triplet loss chooses three samples xa,xp,xn where xp (positive) is assumed to
be similar to xa and (anchor) and xn (negative is assumed to be dissimilar from it). Based on
these assumptions, the loss function

Lt(θ) =
∑
i

max(0, ‖fθ(xa
i)− fθ(x

p
i)‖

2 − ‖fθ(xa
i)− fθ(x

n
i)‖2 −m), (16)

where m is again a threshold, is constructed, based on a sufficient number of triplets xa
i ,x

p
i ,x

n
i .

Triplet loss has been successfully employed to face recognition tasks [70], among others.
More recent works propose more sophisticated loss functions, e.g. Lifted Structured Feature

Embedding [59], Multi-class n-pair loss [71] or angular loss [82].

5 Conclusion

Knowledge can be expected to play a key role in deep learning and AI developments of the years to
come. Many works have investigated the concept of knowledge by emphasizing its interpretation
as domain or expert knowledge and developing methods that infuse complementary, problem-
specific insights into general-purpose machine learning algorithms. The research questions this
type of works tries to answer usually relate to adapting a given model to a specific problem or
situation.

By contrast, many recent trends in machine learning research put the machine learning models
themselves at the center of interest, rather than the diverse application scenarios they can be
applied to. This shifts the focus from adaptation to adaptability, and to the challenge of designing
the models in a way such that the effort involved in adapting them can be minimized.

Motivated by these developments, we conclude that the decisive facet of knowledge in advanc-
ing the field is that of invariance. Not incidentally, it coincides with definitions from knowledge
management. Invariance can refer to different aspects of a machine learning model and, on a
low-level, is already a design principle of well-established neural architectures. However, in order
to interpret, process, represent or generate knowledge with machine learning, we need to achieve
invariance in a broader and more abstract sense. This is a gradual process as there is no clear
boundary at which invariance of skill, distribution or syntax is achieved.

As machine learning models become increasingly invariant, one expects to achieve and enhance
the following properties of future industrial and societal developments.

• Small data size: One fundamental challenge in real-world application is that the size of
data available for training an appropriate machine learning model is often too small. This
is an obstacle researchers and practitioners face all too often, in particular when they need
to apply their model to real-world problems where gathering and annotating data is costly
and publicly available datasets do not exist. By leveraging the advantage of capturing or

17

(15)

where

if the pair is deemed similar and 1 otherwise. This yields the loss function

Lc(θ) =
1

2

∑
i,j,i�=j

(1− yi,j)‖fθ(xi)− fθ(xj)‖2 + yi,j max(0,m− ‖fθ(xi)− fθ(xj)‖)2, (15)

where m > 0 is a threshold value. Contrastive embedding has been successfully applied to
learning similarity of interior design images [6].

Alternatively triplet loss chooses three samples xa,xp,xn where xp (positive) is assumed to
be similar to xa and (anchor) and xn (negative is assumed to be dissimilar from it). Based on
these assumptions, the loss function

Lt(θ) =
∑
i

max(0, ‖fθ(xa
i)− fθ(x

p
i)‖

2 − ‖fθ(xa
i)− fθ(x

n
i)‖2 −m), (16)

where m is again a threshold, is constructed, based on a sufficient number of triplets xa
i ,x

p
i ,x

n
i .

Triplet loss has been successfully employed to face recognition tasks [70], among others.
More recent works propose more sophisticated loss functions, e.g. Lifted Structured Feature

Embedding [59], Multi-class n-pair loss [71] or angular loss [82].

5 Conclusion

Knowledge can be expected to play a key role in deep learning and AI developments of the years to
come. Many works have investigated the concept of knowledge by emphasizing its interpretation
as domain or expert knowledge and developing methods that infuse complementary, problem-
specific insights into general-purpose machine learning algorithms. The research questions this
type of works tries to answer usually relate to adapting a given model to a specific problem or
situation.

By contrast, many recent trends in machine learning research put the machine learning models
themselves at the center of interest, rather than the diverse application scenarios they can be
applied to. This shifts the focus from adaptation to adaptability, and to the challenge of designing
the models in a way such that the effort involved in adapting them can be minimized.

Motivated by these developments, we conclude that the decisive facet of knowledge in advanc-
ing the field is that of invariance. Not incidentally, it coincides with definitions from knowledge
management. Invariance can refer to different aspects of a machine learning model and, on a
low-level, is already a design principle of well-established neural architectures. However, in order
to interpret, process, represent or generate knowledge with machine learning, we need to achieve
invariance in a broader and more abstract sense. This is a gradual process as there is no clear
boundary at which invariance of skill, distribution or syntax is achieved.

As machine learning models become increasingly invariant, one expects to achieve and enhance
the following properties of future industrial and societal developments.

• Small data size: One fundamental challenge in real-world application is that the size of
data available for training an appropriate machine learning model is often too small. This
is an obstacle researchers and practitioners face all too often, in particular when they need
to apply their model to real-world problems where gathering and annotating data is costly
and publicly available datasets do not exist. By leveraging the advantage of capturing or

17

 is a threshold value. Contrastive em-
bedding has been successfully applied to learning
similarity of interior design images [6].

Alternatively triplet loss chooses three samples

if the pair is deemed similar and 1 otherwise. This yields the loss function

Lc(θ) =
1

2

∑
i,j,i�=j

(1− yi,j)‖fθ(xi)− fθ(xj)‖2 + yi,j max(0,m− ‖fθ(xi)− fθ(xj)‖)2, (15)

where m > 0 is a threshold value. Contrastive embedding has been successfully applied to
learning similarity of interior design images [6].

Alternatively triplet loss chooses three samples xa,xp,xn where xp (positive) is assumed to
be similar to xa and (anchor) and xn (negative is assumed to be dissimilar from it). Based on
these assumptions, the loss function

Lt(θ) =
∑
i

max(0, ‖fθ(xa
i)− fθ(x

p
i)‖

2 − ‖fθ(xa
i)− fθ(x

n
i)‖2 −m), (16)

where m is again a threshold, is constructed, based on a sufficient number of triplets xa
i ,x

p
i ,x

n
i .

Triplet loss has been successfully employed to face recognition tasks [70], among others.
More recent works propose more sophisticated loss functions, e.g. Lifted Structured Feature

Embedding [59], Multi-class n-pair loss [71] or angular loss [82].

5 Conclusion

Knowledge can be expected to play a key role in deep learning and AI developments of the years to
come. Many works have investigated the concept of knowledge by emphasizing its interpretation
as domain or expert knowledge and developing methods that infuse complementary, problem-
specific insights into general-purpose machine learning algorithms. The research questions this
type of works tries to answer usually relate to adapting a given model to a specific problem or
situation.

By contrast, many recent trends in machine learning research put the machine learning models
themselves at the center of interest, rather than the diverse application scenarios they can be
applied to. This shifts the focus from adaptation to adaptability, and to the challenge of designing
the models in a way such that the effort involved in adapting them can be minimized.

Motivated by these developments, we conclude that the decisive facet of knowledge in advanc-
ing the field is that of invariance. Not incidentally, it coincides with definitions from knowledge
management. Invariance can refer to different aspects of a machine learning model and, on a
low-level, is already a design principle of well-established neural architectures. However, in order
to interpret, process, represent or generate knowledge with machine learning, we need to achieve
invariance in a broader and more abstract sense. This is a gradual process as there is no clear
boundary at which invariance of skill, distribution or syntax is achieved.

As machine learning models become increasingly invariant, one expects to achieve and enhance
the following properties of future industrial and societal developments.

• Small data size: One fundamental challenge in real-world application is that the size of
data available for training an appropriate machine learning model is often too small. This
is an obstacle researchers and practitioners face all too often, in particular when they need
to apply their model to real-world problems where gathering and annotating data is costly
and publicly available datasets do not exist. By leveraging the advantage of capturing or

17

 where

if the pair is deemed similar and 1 otherwise. This yields the loss function

Lc(θ) =
1

2

∑
i,j,i�=j

(1− yi,j)‖fθ(xi)− fθ(xj)‖2 + yi,j max(0,m− ‖fθ(xi)− fθ(xj)‖)2, (15)

where m > 0 is a threshold value. Contrastive embedding has been successfully applied to
learning similarity of interior design images [6].

Alternatively triplet loss chooses three samples xa,xp,xn where xp (positive) is assumed to
be similar to xa and (anchor) and xn (negative is assumed to be dissimilar from it). Based on
these assumptions, the loss function

Lt(θ) =
∑
i

max(0, ‖fθ(xa
i)− fθ(x

p
i)‖

2 − ‖fθ(xa
i)− fθ(x

n
i)‖2 −m), (16)

where m is again a threshold, is constructed, based on a sufficient number of triplets xa
i ,x

p
i ,x

n
i .

Triplet loss has been successfully employed to face recognition tasks [70], among others.
More recent works propose more sophisticated loss functions, e.g. Lifted Structured Feature

Embedding [59], Multi-class n-pair loss [71] or angular loss [82].

5 Conclusion

Knowledge can be expected to play a key role in deep learning and AI developments of the years to
come. Many works have investigated the concept of knowledge by emphasizing its interpretation
as domain or expert knowledge and developing methods that infuse complementary, problem-
specific insights into general-purpose machine learning algorithms. The research questions this
type of works tries to answer usually relate to adapting a given model to a specific problem or
situation.

By contrast, many recent trends in machine learning research put the machine learning models
themselves at the center of interest, rather than the diverse application scenarios they can be
applied to. This shifts the focus from adaptation to adaptability, and to the challenge of designing
the models in a way such that the effort involved in adapting them can be minimized.

Motivated by these developments, we conclude that the decisive facet of knowledge in advanc-
ing the field is that of invariance. Not incidentally, it coincides with definitions from knowledge
management. Invariance can refer to different aspects of a machine learning model and, on a
low-level, is already a design principle of well-established neural architectures. However, in order
to interpret, process, represent or generate knowledge with machine learning, we need to achieve
invariance in a broader and more abstract sense. This is a gradual process as there is no clear
boundary at which invariance of skill, distribution or syntax is achieved.

As machine learning models become increasingly invariant, one expects to achieve and enhance
the following properties of future industrial and societal developments.

• Small data size: One fundamental challenge in real-world application is that the size of
data available for training an appropriate machine learning model is often too small. This
is an obstacle researchers and practitioners face all too often, in particular when they need
to apply their model to real-world problems where gathering and annotating data is costly
and publicly available datasets do not exist. By leveraging the advantage of capturing or

17

 (positive) is assumed to be sim-
ilar to

if the pair is deemed similar and 1 otherwise. This yields the loss function

Lc(θ) =
1

2

∑
i,j,i�=j

(1− yi,j)‖fθ(xi)− fθ(xj)‖2 + yi,j max(0,m− ‖fθ(xi)− fθ(xj)‖)2, (15)

where m > 0 is a threshold value. Contrastive embedding has been successfully applied to
learning similarity of interior design images [6].

Alternatively triplet loss chooses three samples xa,xp,xn where xp (positive) is assumed to
be similar to xa and (anchor) and xn (negative is assumed to be dissimilar from it). Based on
these assumptions, the loss function

Lt(θ) =
∑
i

max(0, ‖fθ(xa
i)− fθ(x

p
i)‖

2 − ‖fθ(xa
i)− fθ(x

n
i)‖2 −m), (16)

where m is again a threshold, is constructed, based on a sufficient number of triplets xa
i ,x

p
i ,x

n
i .

Triplet loss has been successfully employed to face recognition tasks [70], among others.
More recent works propose more sophisticated loss functions, e.g. Lifted Structured Feature

Embedding [59], Multi-class n-pair loss [71] or angular loss [82].

5 Conclusion

Knowledge can be expected to play a key role in deep learning and AI developments of the years to
come. Many works have investigated the concept of knowledge by emphasizing its interpretation
as domain or expert knowledge and developing methods that infuse complementary, problem-
specific insights into general-purpose machine learning algorithms. The research questions this
type of works tries to answer usually relate to adapting a given model to a specific problem or
situation.

By contrast, many recent trends in machine learning research put the machine learning models
themselves at the center of interest, rather than the diverse application scenarios they can be
applied to. This shifts the focus from adaptation to adaptability, and to the challenge of designing
the models in a way such that the effort involved in adapting them can be minimized.

Motivated by these developments, we conclude that the decisive facet of knowledge in advanc-
ing the field is that of invariance. Not incidentally, it coincides with definitions from knowledge
management. Invariance can refer to different aspects of a machine learning model and, on a
low-level, is already a design principle of well-established neural architectures. However, in order
to interpret, process, represent or generate knowledge with machine learning, we need to achieve
invariance in a broader and more abstract sense. This is a gradual process as there is no clear
boundary at which invariance of skill, distribution or syntax is achieved.

As machine learning models become increasingly invariant, one expects to achieve and enhance
the following properties of future industrial and societal developments.

• Small data size: One fundamental challenge in real-world application is that the size of
data available for training an appropriate machine learning model is often too small. This
is an obstacle researchers and practitioners face all too often, in particular when they need
to apply their model to real-world problems where gathering and annotating data is costly
and publicly available datasets do not exist. By leveraging the advantage of capturing or

17

 and (anchor) and

if the pair is deemed similar and 1 otherwise. This yields the loss function

Lc(θ) =
1

2

∑
i,j,i�=j

(1− yi,j)‖fθ(xi)− fθ(xj)‖2 + yi,j max(0,m− ‖fθ(xi)− fθ(xj)‖)2, (15)

where m > 0 is a threshold value. Contrastive embedding has been successfully applied to
learning similarity of interior design images [6].

Alternatively triplet loss chooses three samples xa,xp,xn where xp (positive) is assumed to
be similar to xa and (anchor) and xn (negative is assumed to be dissimilar from it). Based on
these assumptions, the loss function

Lt(θ) =
∑
i

max(0, ‖fθ(xa
i)− fθ(x

p
i)‖

2 − ‖fθ(xa
i)− fθ(x

n
i)‖2 −m), (16)

where m is again a threshold, is constructed, based on a sufficient number of triplets xa
i ,x

p
i ,x

n
i .

Triplet loss has been successfully employed to face recognition tasks [70], among others.
More recent works propose more sophisticated loss functions, e.g. Lifted Structured Feature

Embedding [59], Multi-class n-pair loss [71] or angular loss [82].

5 Conclusion

Knowledge can be expected to play a key role in deep learning and AI developments of the years to
come. Many works have investigated the concept of knowledge by emphasizing its interpretation
as domain or expert knowledge and developing methods that infuse complementary, problem-
specific insights into general-purpose machine learning algorithms. The research questions this
type of works tries to answer usually relate to adapting a given model to a specific problem or
situation.

By contrast, many recent trends in machine learning research put the machine learning models
themselves at the center of interest, rather than the diverse application scenarios they can be
applied to. This shifts the focus from adaptation to adaptability, and to the challenge of designing
the models in a way such that the effort involved in adapting them can be minimized.

Motivated by these developments, we conclude that the decisive facet of knowledge in advanc-
ing the field is that of invariance. Not incidentally, it coincides with definitions from knowledge
management. Invariance can refer to different aspects of a machine learning model and, on a
low-level, is already a design principle of well-established neural architectures. However, in order
to interpret, process, represent or generate knowledge with machine learning, we need to achieve
invariance in a broader and more abstract sense. This is a gradual process as there is no clear
boundary at which invariance of skill, distribution or syntax is achieved.

As machine learning models become increasingly invariant, one expects to achieve and enhance
the following properties of future industrial and societal developments.

• Small data size: One fundamental challenge in real-world application is that the size of
data available for training an appropriate machine learning model is often too small. This
is an obstacle researchers and practitioners face all too often, in particular when they need
to apply their model to real-world problems where gathering and annotating data is costly
and publicly available datasets do not exist. By leveraging the advantage of capturing or

17

 (negative is assumed
to be dissimilar from it). Based on these assump-
tions, the loss function

if the pair is deemed similar and 1 otherwise. This yields the loss function

Lc(θ) =
1

2

∑
i,j,i�=j

(1− yi,j)‖fθ(xi)− fθ(xj)‖2 + yi,j max(0,m− ‖fθ(xi)− fθ(xj)‖)2, (15)

where m > 0 is a threshold value. Contrastive embedding has been successfully applied to
learning similarity of interior design images [6].

Alternatively triplet loss chooses three samples xa,xp,xn where xp (positive) is assumed to
be similar to xa and (anchor) and xn (negative is assumed to be dissimilar from it). Based on
these assumptions, the loss function

Lt(θ) =
∑
i

max(0, ‖fθ(xa
i)− fθ(x

p
i)‖

2 − ‖fθ(xa
i)− fθ(x

n
i)‖2 −m), (16)

where m is again a threshold, is constructed, based on a sufficient number of triplets xa
i ,x

p
i ,x

n
i .

Triplet loss has been successfully employed to face recognition tasks [70], among others.
More recent works propose more sophisticated loss functions, e.g. Lifted Structured Feature

Embedding [59], Multi-class n-pair loss [71] or angular loss [82].

5 Conclusion

Knowledge can be expected to play a key role in deep learning and AI developments of the years to
come. Many works have investigated the concept of knowledge by emphasizing its interpretation
as domain or expert knowledge and developing methods that infuse complementary, problem-
specific insights into general-purpose machine learning algorithms. The research questions this
type of works tries to answer usually relate to adapting a given model to a specific problem or
situation.

By contrast, many recent trends in machine learning research put the machine learning models
themselves at the center of interest, rather than the diverse application scenarios they can be
applied to. This shifts the focus from adaptation to adaptability, and to the challenge of designing
the models in a way such that the effort involved in adapting them can be minimized.

Motivated by these developments, we conclude that the decisive facet of knowledge in advanc-
ing the field is that of invariance. Not incidentally, it coincides with definitions from knowledge
management. Invariance can refer to different aspects of a machine learning model and, on a
low-level, is already a design principle of well-established neural architectures. However, in order
to interpret, process, represent or generate knowledge with machine learning, we need to achieve
invariance in a broader and more abstract sense. This is a gradual process as there is no clear
boundary at which invariance of skill, distribution or syntax is achieved.

As machine learning models become increasingly invariant, one expects to achieve and enhance
the following properties of future industrial and societal developments.

• Small data size: One fundamental challenge in real-world application is that the size of
data available for training an appropriate machine learning model is often too small. This
is an obstacle researchers and practitioners face all too often, in particular when they need
to apply their model to real-world problems where gathering and annotating data is costly
and publicly available datasets do not exist. By leveraging the advantage of capturing or

17

if the pair is deemed similar and 1 otherwise. This yields the loss function

Lc(θ) =
1

2

∑
i,j,i�=j

(1− yi,j)‖fθ(xi)− fθ(xj)‖2 + yi,j max(0,m− ‖fθ(xi)− fθ(xj)‖)2, (15)

where m > 0 is a threshold value. Contrastive embedding has been successfully applied to
learning similarity of interior design images [6].

Alternatively triplet loss chooses three samples xa,xp,xn where xp (positive) is assumed to
be similar to xa and (anchor) and xn (negative is assumed to be dissimilar from it). Based on
these assumptions, the loss function

Lt(θ) =
∑
i

max(0, ‖fθ(xa
i)− fθ(x

p
i)‖

2 − ‖fθ(xa
i)− fθ(x

n
i)‖2 −m), (16)

where m is again a threshold, is constructed, based on a sufficient number of triplets xa
i ,x

p
i ,x

n
i .

Triplet loss has been successfully employed to face recognition tasks [70], among others.
More recent works propose more sophisticated loss functions, e.g. Lifted Structured Feature

Embedding [59], Multi-class n-pair loss [71] or angular loss [82].

5 Conclusion

Knowledge can be expected to play a key role in deep learning and AI developments of the years to
come. Many works have investigated the concept of knowledge by emphasizing its interpretation
as domain or expert knowledge and developing methods that infuse complementary, problem-
specific insights into general-purpose machine learning algorithms. The research questions this
type of works tries to answer usually relate to adapting a given model to a specific problem or
situation.

By contrast, many recent trends in machine learning research put the machine learning models
themselves at the center of interest, rather than the diverse application scenarios they can be
applied to. This shifts the focus from adaptation to adaptability, and to the challenge of designing
the models in a way such that the effort involved in adapting them can be minimized.

Motivated by these developments, we conclude that the decisive facet of knowledge in advanc-
ing the field is that of invariance. Not incidentally, it coincides with definitions from knowledge
management. Invariance can refer to different aspects of a machine learning model and, on a
low-level, is already a design principle of well-established neural architectures. However, in order
to interpret, process, represent or generate knowledge with machine learning, we need to achieve
invariance in a broader and more abstract sense. This is a gradual process as there is no clear
boundary at which invariance of skill, distribution or syntax is achieved.

As machine learning models become increasingly invariant, one expects to achieve and enhance
the following properties of future industrial and societal developments.

• Small data size: One fundamental challenge in real-world application is that the size of
data available for training an appropriate machine learning model is often too small. This
is an obstacle researchers and practitioners face all too often, in particular when they need
to apply their model to real-world problems where gathering and annotating data is costly
and publicly available datasets do not exist. By leveraging the advantage of capturing or

17

(16)

where

if the pair is deemed similar and 1 otherwise. This yields the loss function

Lc(θ) =
1

2

∑
i,j,i�=j

(1− yi,j)‖fθ(xi)− fθ(xj)‖2 + yi,j max(0,m− ‖fθ(xi)− fθ(xj)‖)2, (15)

where m > 0 is a threshold value. Contrastive embedding has been successfully applied to
learning similarity of interior design images [6].

Alternatively triplet loss chooses three samples xa,xp,xn where xp (positive) is assumed to
be similar to xa and (anchor) and xn (negative is assumed to be dissimilar from it). Based on
these assumptions, the loss function

Lt(θ) =
∑
i

max(0, ‖fθ(xa
i)− fθ(x

p
i)‖

2 − ‖fθ(xa
i)− fθ(x

n
i)‖2 −m), (16)

where m is again a threshold, is constructed, based on a sufficient number of triplets xa
i ,x

p
i ,x

n
i .

Triplet loss has been successfully employed to face recognition tasks [70], among others.
More recent works propose more sophisticated loss functions, e.g. Lifted Structured Feature

Embedding [59], Multi-class n-pair loss [71] or angular loss [82].

5 Conclusion

Knowledge can be expected to play a key role in deep learning and AI developments of the years to
come. Many works have investigated the concept of knowledge by emphasizing its interpretation
as domain or expert knowledge and developing methods that infuse complementary, problem-
specific insights into general-purpose machine learning algorithms. The research questions this
type of works tries to answer usually relate to adapting a given model to a specific problem or
situation.

By contrast, many recent trends in machine learning research put the machine learning models
themselves at the center of interest, rather than the diverse application scenarios they can be
applied to. This shifts the focus from adaptation to adaptability, and to the challenge of designing
the models in a way such that the effort involved in adapting them can be minimized.

Motivated by these developments, we conclude that the decisive facet of knowledge in advanc-
ing the field is that of invariance. Not incidentally, it coincides with definitions from knowledge
management. Invariance can refer to different aspects of a machine learning model and, on a
low-level, is already a design principle of well-established neural architectures. However, in order
to interpret, process, represent or generate knowledge with machine learning, we need to achieve
invariance in a broader and more abstract sense. This is a gradual process as there is no clear
boundary at which invariance of skill, distribution or syntax is achieved.

As machine learning models become increasingly invariant, one expects to achieve and enhance
the following properties of future industrial and societal developments.

• Small data size: One fundamental challenge in real-world application is that the size of
data available for training an appropriate machine learning model is often too small. This
is an obstacle researchers and practitioners face all too often, in particular when they need
to apply their model to real-world problems where gathering and annotating data is costly
and publicly available datasets do not exist. By leveraging the advantage of capturing or

17

 is again a threshold, is constructed, based
on a su�cient number of triplets

if the pair is deemed similar and 1 otherwise. This yields the loss function

Lc(θ) =
1

2

∑
i,j,i�=j

(1− yi,j)‖fθ(xi)− fθ(xj)‖2 + yi,j max(0,m− ‖fθ(xi)− fθ(xj)‖)2, (15)

where m > 0 is a threshold value. Contrastive embedding has been successfully applied to
learning similarity of interior design images [6].

Alternatively triplet loss chooses three samples xa,xp,xn where xp (positive) is assumed to
be similar to xa and (anchor) and xn (negative is assumed to be dissimilar from it). Based on
these assumptions, the loss function

Lt(θ) =
∑
i

max(0, ‖fθ(xa
i)− fθ(x

p
i)‖

2 − ‖fθ(xa
i)− fθ(x

n
i)‖2 −m), (16)

where m is again a threshold, is constructed, based on a sufficient number of triplets xa
i ,x

p
i ,x

n
i .

Triplet loss has been successfully employed to face recognition tasks [70], among others.
More recent works propose more sophisticated loss functions, e.g. Lifted Structured Feature

Embedding [59], Multi-class n-pair loss [71] or angular loss [82].

5 Conclusion

Knowledge can be expected to play a key role in deep learning and AI developments of the years to
come. Many works have investigated the concept of knowledge by emphasizing its interpretation
as domain or expert knowledge and developing methods that infuse complementary, problem-
specific insights into general-purpose machine learning algorithms. The research questions this
type of works tries to answer usually relate to adapting a given model to a specific problem or
situation.

By contrast, many recent trends in machine learning research put the machine learning models
themselves at the center of interest, rather than the diverse application scenarios they can be
applied to. This shifts the focus from adaptation to adaptability, and to the challenge of designing
the models in a way such that the effort involved in adapting them can be minimized.

Motivated by these developments, we conclude that the decisive facet of knowledge in advanc-
ing the field is that of invariance. Not incidentally, it coincides with definitions from knowledge
management. Invariance can refer to different aspects of a machine learning model and, on a
low-level, is already a design principle of well-established neural architectures. However, in order
to interpret, process, represent or generate knowledge with machine learning, we need to achieve
invariance in a broader and more abstract sense. This is a gradual process as there is no clear
boundary at which invariance of skill, distribution or syntax is achieved.

As machine learning models become increasingly invariant, one expects to achieve and enhance
the following properties of future industrial and societal developments.

• Small data size: One fundamental challenge in real-world application is that the size of
data available for training an appropriate machine learning model is often too small. This
is an obstacle researchers and practitioners face all too often, in particular when they need
to apply their model to real-world problems where gathering and annotating data is costly
and publicly available datasets do not exist. By leveraging the advantage of capturing or

17

. Triplet
loss has been successfully employed to face recog-
nition tasks [70], among others.

Recent works propose more sophisticated loss
functions, e.g. Lifted Structured Feature Embedding
[59], Multi-class n-pair loss [71] or angular loss [82].

19

Small data size

 One fundamental challenge in real-world
applications is that the size of data available
for training an appropriate machine learning
model is often too small. This is an obstacle
researchers and practitioners face all too of-
ten, in particular when they need to apply their
model to real-world problems where gathering
and annotating data is costly and publicly avai-
lable datasets do not exist. By leveraging the
advantage of capturing or representing intrin-
sic invariance in data, we expect that models
can be learned on small, inconsistent or insuf-
ficiently labeled datesets. That way, the bottle-
neck of industrial applications can be resolved.

Human-like intelligent system

 Invariance is crucial in human-centric enginee-
ring. The ways humans interact with machines
is unique to every user. Systems that interact
with humans in a natural and intuitive way thus
require the capability to adapt to a large variety
of individual traits, such as pronunciation, phy-
sical features or design preferences. By be-
coming increasingly invariant, human-centric
systems could reduce their sensitivity to such
peculiarities, for instance by permitting models
that are trained on a limited set of users to
adapt to new human subjects with their own
unique habits and preferences.

Multi-purpose intelligent systems

 Autonomous systems can be expected to be-
come more versatile and universally applicable
in the future, a trend that can already be obser-
ved today. To this end, they need the capability
to perform di�erent tasks and adapt to diverse
situations which can be only achieved with a
certain degree of invariance.

Conclusion
Knowledge can be expected to play a key role in
deep learning and AI developments of the years to
come. Many works have investigated the concept
of knowledge by emphasizing its interpretation as
domain or expert knowledge and developing met-
hods that infuse complementary, problem-specific
insights into general-purpose machine learning al-
gorithms. The research questions this type of works
tries to answer usually relate to adapting a given
model to a specific problem or situation.

By contrast, many recent trends in machine lear-
ning research put the machine learning models
themselves at the center of interest, rather than the
diverse application scenarios they can be applied to.
This shifts the focus from adaptation to adaptability,
and to the challenge of designing the models in a
way such that the e�ort involved in adapting them
can be minimized.

Motivated by these developments, we conclude
that the decisive facet of knowledge in advancing
the field is that of invariance. Not incidentally, it
coincides with definitions from knowledge ma-
nagement. Invariance can refer to di�erent aspects
of a machine learning model and, on a low-level,
is already a design principle of well-established
neural architectures. However, in order to interpret,
process, represent or generate knowledge with ma-
chine learning, we need to achieve invariance in a
broader and more abstract sense. This is a gradual
process as there is no clear boundary at which inva-
riance of skill, distribution or syntax is achieved.

As machine learning models become increasingly
invariant, one expects to achieve and enhance the
following properties of future industrial and societal
developments.

20

21

References
[1] Pulkit Agrawal, Joao Carreira, and Jitendra
Malik. Learning to see by moving. In Proceedings
of the IEEE international conference on computer
vision, pages 37–45, 2015.

[2] Marcin Andrychowicz, Misha Denil, Sergio
Gomez, Matthew W Ho�man, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando De Freitas.
Learning to learn by gradient descent by gradient
descent. In Advances in neural information proces-
sing systems, pages 3981–3989, 2016.

[3] Martin Arjovsky, Léon Bottou, Ishaan Gulra-
jani, and David Lopez-Paz. Invariant risk minimiza-
tion. arXiv preprint arXiv:1907.02893, 2019.

[4] Sebastian Bader and Pascal Hitzler. Dimen-
sions of neural-symbolic integration - A structured
survey. CoRR, abs/cs/0511042, 2005.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and
Yoshua Bengio. Neural machine translation by jo-
intly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[6] Sean Bell and Kavita Bala. Learning visual si-
milarity for product design with convolutional neu-
ral networks. ACM transactions on graphics (TOG),
34(4):1–10, 2015.

[7] Yoshua Bengio. The consciousness prior.
arXiv preprint arXiv:1709.08568, 2017.

[8] Tarek R. Besold, Artur S. d’Avila Garcez,
Sebastian Bader, Howard Bowman, Pedro M. Do-
mingos, Pascal Hitzler, Kai-Uwe Kühnberger, Luís C.
Lamb, Daniel Lowd, Priscila Machado Vieira Lima,
Leo de Penning, Gadi Pinkas, Hoifung Poon, and
Gerson Zaverucha. Neural-symbolic learning and
reasoning: A survey and interpretation. CoRR,
abs/1711.03902, 2017.

[9] H. Blockeel, K.M. Borgwardt, L. De Raedt,
P. Domingos, K. Kersting, and X. Yan. Guest editorial
to the special issue on inductive logic programm-
ing, mining and learning in graphs and statistical
relational learning. Machine Learning, 83:133–135,
2011.

[10] Aleksandar Bojchevski, Oleksandr Shchur,
Daniel Zügner, and Stephan Günnemann. Netgan:
Generating graphs via random walks. arXiv preprint
arXiv:1803.00816, 2018.

[11] Joan Bruna, Wojciech Zaremba, Arthur
Szlam, and Yann LeCun. Spectral networks and lo-
cally connected networks on graphs. arXiv preprint
arXiv:1312.6203, 2013.

[12] François Chollet. The measure of intelligen-
ce. arXiv preprint arXiv:1911.01547, 2019.

[13] Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex
Smola, and Le Song. Learning steady-states of itera-
tive algorithms over graphs. In International confe-
rence on machine learning, pages 1106–1114, 2018.

[14] T.H. Davenport and L. Prusak. Working
Knowledge: How Organizations Manage what They
Know. EBSCO eBook Collection. Harvard Business
School Press, 2000.

[15] A. d’Avila Garcez, L. C. Lamb, and D. M.
Gabbay. Connec- tionist modal logic: Representing
modalities in neural networks. Theoretical Compu-
ter Science, 371:34–53, 2007.

[16] L de Penning, A dâ€™Avila Garcez, L. C.
Lamb, and J. J. Meyer. An integrated neural-symbo-
lic cognitive agent architecture for training and as-
sessment in simulators. Proceedings of the Twenty-
Second International Joint Conference on Artificial
Intelligence, held at AAAI-2010, pages 1653–1658,
2010.

[17] L de Penning, A dâ€™Avila Garcez, L. C.
Lamb, and J. J. Meyer. A neural-symbolic cognitive
agent for online learning and reasoning. In 22nd
International Joint Conference on Artificial Intelli-
gence, 2011.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understan-
ding. arXiv preprint arXiv:1810.04805, 2018.

[19] Frederik Diehl, Thomas Brunner, Micha-
el Truong Le, and Alois Knoll. Towards graph poo-
ling by edge contraction. In ICML 2019 Workshop
on Learning and Reasoning with Graph-Structured
Data, 2019.

[20] Carl Doersch, Abhinav Gupta, and Alexei A
Efros. Unsupervised visual representation learning
by context prediction. In Proceedings of the IEEE
International Conference on Computer Vision, pa-
ges 1422–1430, 2015.

22

[32] Daniel Greenfeld and Uri Shalit. Robust lear-
ning with the hilbert-schmidt independence criteri-
on. arXiv preprint arXiv:1910.00270, 2019.

[33] Raia Hadsell, Sumit Chopra, and Yann Le-
Cun. Dimensionality reduction by learning an in-
variant mapping. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Re-
cognition (CVPR’06), volume 2, pages 1735–1742.
IEEE, 2006.

[34] D Harel, D Kozen, and J Tiuryn. Dynamic
logic. SIGACT News, 32:66–69, 2001.

[35] Geo�rey E Hinton, Alex Krizhevsky, and
Sida D Wang. Transforming auto-encoders. In Inter-
national conference on artificial neural networks,
pages 44–51. Springer, 2011.

[36] WikiCommons Image: Longlivetheux / CC
BY-SA (https://creativecommons.org/licenses/by
sa/4.0).

[37] Jie Hu, Li Shen, and Gang Sun.
Squeeze-and-excitation networks. In Proceedings
of the IEEE conference on computer vision and
pattern recognition, pages 7132–7141, 2018.

[38] Longlong Jing and Yingli Tian. Self-super-
vised visual feature learning with deep neural net-
works: A survey. arXiv preprint arXiv:1902.06162,
2019.

[39] Daniel Kahneman. Thinking, fast and slow.
Macmillan, 2011.

[40] Jinkyu Kim and John Canny. Interpretable
learning for self-driving cars by visualizing causal
attention. In Proceedings of the IEEE international
conference on computer vision, pages 2942–2950,
2017.

[41] Thomas N Kipf and Max Welling. Semi-su-
pervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

[42] D Koller and N Friedman. Probabilistic
Graphical Models: Principles and Techniques. MIT
Press, 2009.

[43] Risi Kondor and Shubhendu Trivedi. On the
generalization of equivariance and convolution in
neural networks to the action of compact groups.
arXiv preprint arXiv:1802.03690, 2018.

[21] Chelsea Finn, Pieter Abbeel, and Sergey
Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Proceedings of the 34th
International Conference on Machine Learning-Vo-
lume 70, pages 1126–1135. JMLR. org, 2017.

[22] Chelsea Finn, Kelvin Xu, and Sergey Levine.
Probabilistic model-agnostic meta-learning. In Ad-
vances in Neural Information Processing Systems,
pages 9516–9527, 2018.

[23] Peter Flach. Machine learning: the art and
science of algorithms that make sense of data.
Cambridge University Press, 2012.

[24] A. Garcez, L. C. Lamb, and D.M. Gabbay.
Neural-Symbolic Cognitive Reasoning. Cognitive
Technologies. Springer, 2009.

[25] A Garcez and G Zaverucha. The connec-
tionist inductive learning and logic programming
system. Applied Intelligence, 11:59–77, 1999.

[26] Artur d’Avila Garcez, Tarek R. Besold, Luc de
Raedt, Peter Földiak, Pascal Hitzler, Thomas Icard,
Kai-Uwe Kühnberger, Luis C. Lamb, Risto Miikku-
lainen, and Daniel L. Silver. Neural-symbolic lear-
ning and reasoning: Contributions and challenges.
Knowledge Representation and Reasoning, pages
18–21, 2015.

[27] Spyros Gidaris, Praveer Singh, and Nikos
Komodakis. Unsupervised representation learning
by predicting image rotations. arXiv preprint ar-
Xiv:1803.07728, 2018.

[28] Ian Goodfellow, Jean Pouget-Abadie, Meh-
di Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014.

[29] Andrew D Gordon, Thomas A Henzinger,
Aditya V Nori, and Sriram K Rajamani. Probabilistic
programming. In Proceedings of the on Future of
Software Engineering, pages 167–181. ACM, 2014.

[30] Jonathan Gordon, John Bronskill, Matthias
Bauer, Sebastian Nowozin, and Richard E Turner.
Meta-learning probabilistic inference for prediction.
arXiv preprint arXiv:1805.09921, 2018.

[31] Erin Grant, Chelsea Finn, Sergey Levine,
Trevor Darrell, and Thomas Gri�ths. Recasting gra-
dient-based meta-learning as hierarchical bayes.
arXiv preprint arXiv:1801.08930, 2018.

23

[44] Adam Kosiorek, Sara Sabour, Yee Whye Teh,
and Geo�rey E Hinton. Stacked capsule autoencod-
ers. In Advances in Neural Information Processing
Systems, pages 15486–15496, 2019.

[45] M. Krötzsch, S. Rudolph, and P. Hitzler.
Complexity of horn description logics. ACM Trans.
Comput. Logic, 44, 2013.

[46] Yann LeCun, Yoshua Bengio, and Geo�rey
Hinton. Keynote Talk at AAAI, 2020.

[47] Honglak Lee, Roger Grosse, Rajesh Ranga-
nath, and Andrew Y Ng. Convolutional deep belief
networks for scalable unsupervised learning of hier-
archical representations. In Proceedings of the 26th
annual international conference on machine learn-
ing, pages 609–616, 2009.

[48] Juho Lee, Yoonho Lee, Jungtaek Kim,
Adam R Kosiorek, Seungjin Choi, and Yee Whye
Teh. Set transformer: A framework for atten-
tion-based permutation-invariant neural networks.
arXiv preprint arXiv:1810.00825, 2018.

[49] Ruoyu Li, Sheng Wang, Feiyun Zhu, and
Junzhou Huang. Adaptive graph convolutional neu-
ral networks. In Thirty-second AAAI conference on
artificial intelligence, 2018.

[50] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu,
Xinhan Di, and Baoquan Chen. Pointcnn: Convolu-
tion on x-transformed points. In Advances in neural
information processing systems, pages 820–830,
2018.

[51] Yujia Li, Daniel Tarlow, Marc Brockschmidt,
and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

[52] V. Lifschitz. Answer set programming and
plan generation. Artificial Intelligence, 138:39–54,
2002.

[53] Stéphane Mallat. Understanding deep con-
volutional networks. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and
Engineering Sciences, 374(2065):20150203, 2016.

[54] Gary Marcus. The next decade in ai: four
steps towards robust artificial intelligence. arXiv pre-
print arXiv:2002.06177, 2020.

[55] Tomas Mikolov, Kai Chen, Greg Corrado,
and Je�rey Dean. E�cient estimation of word
representations in vector space. arXiv preprint arX-
iv:1301.3781, 2013.

[56] Nikhil Mishra, Mostafa Rohaninejad,
Xi Chen, and Pieter Abbeel. A simple neural atten-
tive meta-learner. arXiv preprint arXiv:1707.03141,
2017.

[57] Federico Monti, Davide Boscaini, Jona-
than Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. Geometric deep learning on
graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5115–5124,
2017.

[58] Mehdi Noroozi and Paolo Favaro. Unsuper-
vised learning of visual representations by solving
jigsaw puzzles. In European Conference on Com-
puter Vision, pages 69–84. Springer, 2016.

[59] Hyun Oh Song, Yu Xiang, Stefanie Jegelka,
and Silvio Savarese. Deep metric learning via lifted
structured feature embedding. In Proceedings of
the IEEE conference on computer vision and pat-
tern recognition, pages 4004–4012, 2016.

[60] Boris Oreshkin, Pau Rodríguez López, and
Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. In Advances
in Neural Information Processing Systems, pages
721–731, 2018.

[61] Yanwei Pang, Jin Xie, Muhammad Haris
Khan, Rao Muhammad Anwer, Fahad Shahbaz
Khan, and Ling Shao. Mask-guided attention net-
work for occluded pedestrian detection. In Pro-
ceedings of the IEEE International Conference on
Computer Vision, pages 4967–4975, 2019.

[62] Deepak Pathak, Philipp Krahenbuhl, Je�
Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Procee-
dings of the IEEE conference on computer vision
and pattern recognition, pages 2536–2544, 2016.

[63] Bryan Perozzi, Rami Al-Rfou, and Steven
Skiena. Deepwalk: Online learning of social re-
presentations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710, 2014.

[64] A Pnueli. The temporal logic of programs.
18th Annual Symposium on Foundations of Com-
puter Science, pages 46–57, 1977.

[65] Prajit Ramachandran, Niki Parmar, Ashish
Vaswani, Irwan Bello, Anselm Levskaya, and Jonat-
hon Shlens. Stand-alone self-attention in vision mo-
dels. arXiv preprint arXiv:1906.05909, 2019.

24

[66] Siamak Ravanbakhsh, Je� Schneider, and
Barnabas Poczos. Equivariance through parameter-
sharing. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pa-
ges 2892–2901. JMLR. org, 2017.

[67] Sachin Ravi and Hugo Larochelle. Optimiza-
tion as a model for few-shot learning. 2016.

[68] J.E. Rowley and R.J. Hartley. Organizing
Knowledge: An Introduction to Managing Access to
Information. Ashgate, 2008.

[69] Jennifer Rowley. The wisdom hierarchy:
representations of the dikw hierarchy. Journal of
Information Science, 33(2):163–180, 2007.

[70] Florian Schro�, Dmitry Kalenichenko, and
James Philbin. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of
the IEEE conference on computer vision and pat-
tern recognition, pages 815–823, 2015.

[71] Kihyuk Sohn. Improved deep metric lear-
ning with multi-class n-pair loss objective. In Ad-
vances in neural information processing systems,
pages 1857–1865, 2016.

[72] Nitish Srivastava, Elman Mansimov, and Rus-
lan Salakhudinov. Unsupervised learning of video
representations using lstms. In International confe-
rence on machine learning, pages 843–852, 2015.

[73] Flood Sung, Yongxin Yang, Li Zhang, Tao
Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot
learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages
1199–1208, 2018.

[74] Dmitry Ulyanov, Andrea Vedaldi, and Victor
Lempitsky. Deep image prior. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 9446–9454, 2018.

[75] D Van Dalen. Intuitionistic logic. In In Hand-
book of philosophical logic, pages 1–114. Springer,
2002.

[76] Ashish Vaswani, Noam Shazeer, Niki Par-
mar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
łukasz Kaiser, and Illia Polosukhin. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008, 2017.

[77] Petar Veličković, Guillem Cucurull, Arantxa
Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[78] Petar Veličković, William Fedus, William L
Hamilton, Pietro Liò, Yoshua Bengio, and R De-
von Hjelm. Deep graph infomax. arXiv preprint ar-
Xiv:1809.10341, 2018.

[79] Oriol Vinyals, Samy Bengio, and Manjunath
Kudlur. Order matters: Sequence to sequence for
sets. arXiv preprint arXiv:1511.06391, 2015.

[80] Oriol Vinyals, Charles Blundell, Timothy Lil-
licrap, Daan Wierstra, et al. Matching networks for
one shot learning. In Advances in neural informa-
tion processing systems, pages 3630–3638, 2016.

[81] Laura Von Rueden, Sebastian Mayer, Jo-
chen Garcke, Christian Bauckhage, and Jannis
Schuecker. Informed machine learning–towards a
taxonomy of explicit integration of knowledge into
machine learning. Learning, 18:19–20, 2019.

[82] Jian Wang, Feng Zhou, Shilei Wen, Xiao
Liu, and Yuanqing Lin. Deep metric learning with
angular loss. In Proceedings of the IEEE Internatio-
nal Conference on Computer Vision, pages 2593–
2601, 2017.

[83] Xiaolong Wang, Ross Girshick, Abhinav
Gupta, and Kaiming He. Non-local Neural Net-
works. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Re-
cognition, pages 7794–7803, 2018.

[84] Kilian Q Weinberger and Lawrence K Saul.
Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Lear-
ning Research, 10(2), 2009.

[85] Zonghan Wu, Shirui Pan, Fengwen Chen,
Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[86] Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyung-
hyun Cho, Aaron Courville, Ruslan Salakhutdinov,
Richard S Zemel, and Yoshua Bengio. Show, Attend
and Tell: Neural Image Caption Generation with
Visual Attention. In Proceedings of the 32Nd Inter-
national Conference on International Conference
on Machine Learning - Volume 37, ICML’15, pages
2048–2057. JMLR.org, 2015.

25

[87] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[88] Huaxiu Yao, Xian Wu, Zhiqiang Tao, Yaliang
Li, Bolin Ding, Ruirui Li, and Zhenhui Li. Automa-
ted relational meta-learning. arXiv preprint ar-
Xiv:2001.00745, 2020.

[89] Sung Whan Yoon, Jun Seo, and Jaekyun
Moon. Tapnet: Neural network augmented with
task-adaptive projection for few-shot learning. arXiv
preprint arXiv:1905.06549, 2019.

[90] Manzil Zaheer, Satwik Kottur, Siamak Ra-
vanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances
in neural information processing systems, pages
3391–3401, 2017.

[91] Amir R Zamir, Tilman Wekel, Pulkit Agra-
wal, Colin Wei, Jitendra Malik, and Silvio Savarese.
Generic 3d representation via pose estimation and
matching. In European Conference on Computer
Vision, pages 535–553. Springer, 2016.

[92] Liheng Zhang, Guo-Jun Qi, Liqiang Wang,
and Jiebo Luo. Aet vs. aed: Unsupervised represen-
tation learning by auto-encoding transformations
rather than data. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 2547–2555, 2019.

[93] Richard Zhang, Phillip Isola, and Alexei A
Efros. Colorful image colorization. In European
conference on computer vision, pages 649–666.
Springer, 2016.

[94] Shanshan Zhang, Jian Yang, and Bernt
Schiele. Occluded pedestrian detection through
guided attention in CNNs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 6995–7003, 2018.

26

Publisher
fortiss
www.fortiss.org
© 2021

Authors
Alexander Sagel, Amit Sahu, Stefan Matthes,
Holger Pfeifer, Tianming Qiu, Harald Rueß,
Hao Shen, Julian Wörmann

Layout
Sonja Taut

Print
viaprinto | CEWE Stiftung & Co. KGaA
Martin-Luther-King-Weg 30a
48155 Münster

ISSN Print ISSN Online
2699-1217 2700-2977

1. Edition, July 2021

Picture Credits
Titel: shutterstock ©Photon photo
Seite 4: shutterstock ©ÆÆFastMotion
Seite 8: shutterstock ©INGARA
Seite 10: shutterstock ©Aon Khanisorn
Seite 12: shutterstock ©Tavarius
Seite 16: shutterstock ©Michael Traitov
Seite 18: shutterstock ©whiteMocca
Seite 20: shutterstock ©ex_artist
Seite 26: fortissGmbH ©ÆKathrin Kahle

Imprint

27

Although this white paper was prepared with the
utmost care and diligence, inaccuracies cannot be
excluded. No guarantee is provided, and no legal
responsibility or liability is assumed for any damages
resulting from erroneous information.

fortiss is the Free State of Bavaria research institute
for software-intensive systems based in Munich. The
institute’s scientists work on research, development
and transfer projects together with universities and
technology companies in Bavaria and other parts
of Germany, as well as across Europe. The research
activities focus on state-of-the-art methods, tech-
niques and tools used in software development and
systems & service engineering and their application
with cognitive cyber-physical systems such as the
Internet of Things (IoT).

fortiss is legally structured as a non-profit limited
liability company (GmbH). The shareholders are the
Free State of Bavaria (majority shareholder) and the
Fraunhofer-Gesellschaft zur Förderung der ange-
wandten Forschung e.V.

28

fortiss GmbH
Guerickestraße 25
80805 Munich
Germany
www.fortiss.org
Tel.: +49 89 3603522 0
E-Mail: info@fortiss.org

