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Abstract
Research in machine learning is at a turning point. 
While supervised deep learning has conquered the 
field at a breathtaking pace and demonstrated the 
ability to solve inference problems with unprece-
dented accuracy, it still does not quite live up to 
its name if we think of learning as the process of 
acquiring knowledge about a subject or problem. 
Major weaknesses of present-day deep learning 
models are, for instance, their lack of adaptability 
to changes of environment or their incapability to 
perform other kinds of tasks than the one they were 
trained for. While it is still unclear how to overcome 
these limitations, one can observe a paradigm shift 
within the machine learning community, with re-
search interests shifting away from increasing the 
performance of highly parameterized models to 
exceedingly specific tasks, and towards employing 
machine learning algorithms in highly diverse do-
mains. This research question can be approached 

from di�erent angles. For instance, the field of 
Informed AI investigates the problem of infusing 
domain knowledge into a machine learning model, 
by using techniques such as regularization, data 
augmentation or post-processing. 

On the other hand, a remarkable number of works 
in the recent years has focused on developing mo-
dels that by themselves guarantee a certain degree 
of versatility and invariance with respect to the do-
main or problem at hand. Thus, rather than investi-
gating how to provide domain-specific knowledge 
to machine learning models, these works explore 
methods that equip the models with the capability 
of acquiring the knowledge by themselves. This 
white paper provides an introduction and discus-
sion of this emerging field in machine learning re-
search. To this end, it reviews the role of knowledge 
in machine learning, and discusses its relation to the 
concept of invariance, before providing a literature 
review of the field. Additionally, it gives insight into 
some historical context. 
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Introduction
One of the most prominent researchers in deep 
learning, Yoshua Bengio, cites the Global Work-
space Theory of Consciousness [39] as his pre-
ferred model of human cognitive capabilities [7]. 
According to this theory, human consciousness 
can be grouped into two systems, with System 1 
performing intuitive, automated tasks that we can 
do instinctively and System 2 performing tasks that 
require conscious decision making and can be de-
scribed verbally.

Current deep learning algorithms are particularly 
good at performing System 1-level tasks. For instan-
ce, if we are presented with pictures of edible plant 
matter and are asked to group them into nutritional 
categories, such as fruits, vegetables, nuts, grains, 
legumes, etc, we would perform this task instincti-
vely and probably without any hesitation. The same 
task should also be easily accomplished by a neural 
network, trained with the appropriate data. Consi-
der now an adaptation of the task, where we are 
asked to group the same images into botanical ca-
tegories, such as leafs, fruits (in the botanical sen-
se), roots, seeds, etc. Many of us would probably 
feel slightly less confident with performing this task, 
but after reading up the according definitions, hu-
mans would likely still perform quite well. A neural 
network, on the other hand, would typically require 
re-learning all of its parameters.

The above example exposes two remarkable cog-
nitive capabilities present in humans that neural 
networks typically lack: the ability to incorporate 
complementary input into the task execution and 
the ability to generalize a System 1 level skill to 
changes in the problem setting. It makes sense to 
treat these two capabilities as flip sides of the same 
coin. The reason can be found in the No free lunch 
theorem [23], since, broadly speaking, a model that 
is perfectly adapted to one task can not be gene-
ralized to other tasks without either forfeiting per-
formance or infusing additional assumptions about 
the task or the data into it.

Unsurprisingly, the field of Informed Machine Lear-
ning [81] that investigates how to enhance machi-
ne learning by means of prior domain knowledge 
has gained considerable importance. The emp-
loyed techniques include methods such as data 
augmentation, loss regularization, hyper-parameter 
design or post-process filtering of the model out-
put [81]. However, these approaches build upon 
the assumption that today’s o�-the-shelf deep 
learning models o�er su�cient versatility to adapt 
to specified scenarios on-demand. This is unlikely 

the case and one of the major reasons for this has 
to do with the research culture of the machine 
learning community. As argued in [12], progress in 
machine learning is heavily driven by universally 
available and easily implementable benchmarks 
and improvement of a model is measured by how 
well it is adapted to these benchmarks. Now, what 
used to be a catalyst of research advances for deep 
learning is becoming more and more of a burden, 
as demand for generalization increases and ad-
versarial attacks expose the weaknesses of highly 
specialized training. This bias towards specialization 
has been recognized and identified as a problem 
by the community’s leading figures, such as Yoshua 
Bengio, Geo�rey Hinton and Yann LeCun [46]. Si-
milar concerns were expressed by François Chollet 
[12] and Gary Marcus [54].

These debates have sparked a number of research 
directions that rather than studying the adaptation
of machine learning models to a specific problem 
or situation, focus on their adaptability. This adap-
tability can refer to di�erent aspects of the problem 
at hand, e.g. the lighting condition in visual data, 
the length of a natural-language phrase or even 
the skill that is to be learned itself. This white paper 
is a modest attempt to provide an overview of the 
most promising developments in this direction and 
to exemplify their relation to the concept of know-
ledge in AI. 
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Knowledge as 
Invariance

From Machine Learning to Knowledge 
Acquisition

The Oxford Dictionaries define knowledge as 
facts, information, and skills acquired by a person 
through experience or education or the theoretical 
or practical understanding of a subject. Current AI 
systems, notably deep learning architectures, can 
be described as systems that acquire facts or skills 
through experience or education, i.e. training. Still, 
neural networks can be hardly considered know-
ledgeable in the broader sense in which we unders-
tand this term. But what is it about knowledge that 
current AI methods in general and deep learning 
specifically fall short of? What should a “knowledge-
able system” be able to do that a typical deep neu-
ral network can not? 

Figure 1 depicts the DIKW Pyramid [69] that groups 
the terms data - information - knowledge - wisdom 
along an abstraction hierarchy. While raw data is use-
less for carrying out any decisions, information infers 
structure and task-bound function from data by pro-
viding answers to clearly specified questions [68]. 

In a way, today’s established deep learning systems 
predominantly work on this level of abstraction. 
They take raw data and infer just enough rules 
from it, to answer questions such as “Does this 
image contain a cat?” or “Did this reviewer enjoy 
that book?”. If we think of wisdom as the level 

corresponding to a hypothetical Artificial General 
Intelligence (AGI), i.e. systems that can be conside-
red fully autonomous up to the point of asking for 
a higher meaning or purpose of a task, knowledge 
would correspond to a stage somewhere in-bet-
ween the two. 

Knowledgeable machines should go beyond ans-
wering well-defined task-specific questions and see 
a slightly bigger picture without necessarily beco-
ming fully autonomous in that. Davenport and Pru-
sak [14] describe knowledge as 

[...] a fluid mix of framed experience, values, con-
textual information, expert insight and grounded 
intuition that provides an environment and frame-
work for evaluating and incorporating new expe-
riences and information. 

Note how this definition puts emphasis on adap-
tability. This coincides with the widely accepted 
notion that only by solving transfer tasks, we can 
verify that we have knowledge in a field. Informed 
systems di�er from knowledgeable ones in how 
rigid they are with respect to a skill or a situation. 
The transition from informed to knowledge-based 
AI thus heavily depends on how invariant they be-
come. 

Admittedly, machine learning has always been ab-
out invariance. Deep convolutional neural nets, for 
instance, learn low-level invariances on the pixel 
level, e.g. invariance to translation operations. Ho-
wever, invariance at higher levels of abstraction is 
still rare to find in contemporary machine learning 
models. In particular, we believe that the following 
three types of invariance are crucial for knowledge-
based AI models.

Wisdom

Knowlege

Information

Data

Figure 1: The DIKW Pyramid. 
Source: [36]
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Invariance to the Skill

Deep Learning owes much of its success to the 
supervised learning paradigm. At the same time, the 
emphasis on supervised learning has been identified 
as one of the major limiting factors in achieving 
AGI [46]. Formally, most of the common supervised 
learning problems can be written as some form of 
function approximation, in which the task is to find 
a 

and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to
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-parameterized function 

and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to
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(1)

that maps (approximately) each input data sample 

and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to
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and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to
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 according to the rules that have 
been learned from a set of labeled training data 

and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to
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(2)

We generally assume that the training set has been 
independently sampled from a joint distribution 

and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to
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 such that the function approximation can 
be phrased as likelihood optimization for the train-
able parameter 

and incorporating new experiences and information.

Note how this definition puts emphasis on adaptability. This coincides with the widely accepted
notion that only by solving transfer tasks, we can verify that we have knowledge in a field.
Informed systems differ from knowledgeable ones in how rigid they are with respect to a skill or
a situation. The transition from informed to knowledge-based AI thus heavily depends on how
invariant they become.

Admittedly, machine learning has always been about invariance. Deep convolutional neural
nets, for instance, learn low-level invariances on the pixel level, e.g. invariance to translation
operations. However, invariance at higher levels of abstraction is still rare to find in contemporary
machine learning models. In particular, we believe that the following three types of invariance
are crucial for knowledge-based AI models.

2.1.1 Invariance to the Skill

Deep Learning owes much of its success to the supervised learning paradigm. At the same time,
the emphasis on supervised learning has been identified as one of the major limiting factors in
achieving AGI [46]. Formally, most of the common supervised learning problems can be written
as some form of function approximation, in which the task is to find a θ-parameterized function

fθ : X → Y (1)

that maps (approximately) each input data sample x to a label y according to the rules that
have been learned from a set of labeled training data

{(xi,yi)}i=1,...,N . (2)

We generally assume that the training set has been independently sampled from a joint distribu-
tion p(x,y) such that the function approximation can be phrased as likelihood optimization for
the trainable parameter θ, e.g. the entirety of weights in the neural network to be trained. It
should go without saying, that by training a model in such a way, it does not acquire knowledge
regarding the data it has been fed with, as knowledge is characterized by being transferable from
one skill to another.

In order to acquire knowledge, a model should not just yield one particular function, but
provide a possibility to infer different kinds of functions with respect to the data it has been
trained on. For instance, a model that has been fed with natural images should not just be able
to classify the images in categories, but perform semantically related tasks, such as detecting
which kinds of objects tend to appear close to each other, how they are spatially aligned with
respect to each other and so on.

2.1.2 Invariance to the Data Distribution

Most common optimization objectives in machine learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that training and test data are sampled from the
same distribution. In reality, data is gathered under conditions that can change. Arjovski et al.
provide an illustrating example of this issue in [3]: consider a neural network that is trained to
classify images into photographs of cows and camels. As such pictures are usually taken in the
environments one would expect to find the respective ruminants, the network will likely tend to
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, e.g. the entirety of weights in the 
neural network to be trained. It should go without 
saying, that by training a model in such a way, it 
does not acquire knowledge regarding the data it 
has been fed with, as knowledge is characterized by 
being transferable from one skill to another.

In order to acquire knowledge, a model should not 
just yield one particular function, but provide a pos-
sibility to infer di�erent kinds of functions with re-
spect to the data it has been trained on. For instan-
ce, a model that has been fed with natural images 
should not just be able to classify the images in 
categories, but perform semantically related tasks, 
such as detecting which kinds of objects tend to 
appear close to each other, how they are spatially 
aligned with respect to each other and so on. 

Invariance to the Data Distribution

Most common optimization objectives in machine 
learning are derived from likelihood maximiza-
tion. This builds upon the implicit assumption that 
training and test data are sampled from the same 
distribution. In reality, data is gathered under con-
ditions that can change. Arjovski et al. provide an 
illustrating example of this issue in [3]: consider a 
neural network that is trained to classify images into 
photographs of cows and camels. As such pictures 
are usually taken in the environments one would 
expect to find the respective ruminants, the net-
work will likely tend to assign green grassland to the 
former, and sandy landscapes to the latter category. 
While from a statistical point of view, this is a per-

fectly legitimate way to infer correlations from the 
data, it contradicts another aspect of knowledge 
that transcends the System I-level skillset, namely 
the capability of adapting to changes in situation, 
context or environment.

This capability is typically referred to as out of dis-
tribution (OOD) generalization. Unfortunately, there 
is no universally accepted metric that evaluates the 
OOD capabilities of a model, since by its very de-
finition it does not characterize machine learning 
models by what they generalize to, but by what they 
do not generalize to (the training data distribution).

As an illustration of the di�culty to define an appro-
priate OOD objective, consider again the supervised 
learning task of identifying the function 

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)
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fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)
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that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)
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assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 mainly e�ects 
the background of an image. If 

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)

5

 is trained from the 



8

data, then we need to trust that if it elicits an invari-
ant predictor for the environments in 

assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)
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assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)
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assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)
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assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)
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assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)
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assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)
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assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as

Le(θ) = Ex,y∼pe[‖fθ(x)− y‖2]. (4)

But in order to minimize such an objective for all environments e ∈ E fairly, we would need to
make assumptions about the statistics of the environments themselves. For instance, the obvious
optimization problem

min
θ

Ee∼p(e)[L
e(θ)] (5)

requires a model for the distribution p(e) of environments. Note that estimating p(e) from data
would require the training data to be representative of the environments to appear in testing
phase, which contradicts the premise of OOD. One such possible assumption is that the function
can be written as

fθ = ϕθ ◦ φ, (6)

where φ has the property that
θ̂ = argmin

θ
Le(θ) (7)

does not depend on e. The function φ is then said to elicit an E-invariant predictor [3]. For
instance, in the cow/camel example above, a function that removes the background from an
image and replaces it by neutral pixels, elicits an invariant predictor of the class. Again, it is
important to be aware of the implicit assumptions that we make about E . In this case, we assume
that a change of e mainly effects the background of an image. If φ is trained from the data, then
we need to trust that if it elicits an invariant predictor for the environments in E , it does so also
for all possible environments that could appear in the testing phase.

A slightly different attempt to formalize OOD has been given in [32]. The authors assume a
joint train probability psource(x,y) between data x and label y that does not necessarily coincide
with the unknown target distribution ptarget(x,y). However, it is assumed that the conditional
distribution of y, given a realization of x, is universal to all possible conditions, i.e.

psource(y|x = x) = ptarget(y|x = x) (8)

for all possible x ∈ X and no matter what the target environment looks like. The authors
approach this aim by learning the function fθ : X → Y such that the property of z := y− fθ(x)
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assign green grassland to the former, and sandy landscapes to the latter category. While from a
statistical point of view, this is a perfectly legitimate way to infer correlations from the data, it
contradicts another aspect of knowledge that transcends the System I-level skillset, namely the
capability of adapting to changes in situation, context or environment.

This capability is typically referred to as out of distribution (OOD) generalization. Unfortu-
nately, there is no universally accepted metric that evaluates the OOD capabilities of a model,
since by its very definition it does not characterize machine learning models by what the generalize
to, but by what they do not generalize to (the training data distribution).

As an illustration of the difficulty to define an appropriate OOD objective, consider again the
supervised learning task of identifying the function

fθ : X → Y, θ ∈ Rp (3)

that maps from a data sample x ∈ X to a label y ∈ Y, where the joint distribution pe(x,y) is
determined by the environment e ∈ E . Assuming an �2 loss, we could define the environment-
dependent objective function Le as
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 being indepen-

dent of x is fulfilled. To this end, a measure of inde-
pendence that can be easily optimized is necessary.

Invariance to the Data Syntax

Data is always redundant and this is true regardless 
of it being present in the form of visual data, audio, 
text or any other possible data modality. This redun-
dancy manifests in a set of implicit rules that deter-
mine how meaning is encoded within the respecti-
ve data modality. For documents written in natural 
language, for instance, these rules are determined 
by grammar, whereas in natural images these rules 
stem from physical laws, as well as our geometrical 
notion of objects, backgrounds, compositions, etc. 
When we as humans process data that we gather 
through sensory stimuli, we are able to abstract 
knowledge from its syntactical configuration.

Deep learning has become so successful precisely 
because CNNs are capable of learning representa-



9

tions that are invariant to syntactical clutter such as 
the spatial location or the scale of an object in an 
image. However, this degree of invariance in neural 
networks is mostly limited to visual and sequential 
data, and specifically not complex, structured or 
compositional data types used in knowledge repre-
sentation, such as 

Tables 

Graphs 

Algebraic or Logical Expressions 

Complex Natural-Language Phrases 

Sets 

Indeed, neural networks are pure vector processing 
machines. This means that they realize mathemati-
cal functions that map from one real-valued, finite 
vector space to another. The involved sets are thus 
naturally equipped with mathematical structure 
that symbolic data, to name an example, does 
not possess. Specifically, euclidean vector spaces 
have a metric, and hence allow for distance-based 
classification. Functions on vector spaces can also 
be equipped with properties such as linearity or 
di�erentiability, enabling optimization via gradient 
descent. Non-vector data, on the other hand, lacks 
many of the conveniences that neural networks 
relies on, as listed in the following.

Lack of interface for non-euclidean data structures 
Neural networks expect vectors with a fixed di-
mension at its input and output. While down- and 
upscaling is possible for input images of di�erent 
resolutions, normalizing the size of symbolic data 
is in general not trivial. Moreover, vectors induces a 
natural order of their elements. This can also not be 
guaranteed for non-euclidean data, such as graphs 
or sets.

Lack of a universally applicable inductive bias 
Consider the task of continuing the number se-
quence 1, 2, 3, 4… Humans that learn to count from 
an early age on will naturally make the assumption 
that this is the beginning of the sequence of natural 
numbers. Neural networks are universal function 
approximators. This implies that without any additi-
onal assumption about the data at hand, there is no 
reason to believe that a neural network would con-
tinue the sequence the same manner as us. These 
kinds of prior assumption about the data is called 
the inductive bias. Deep learning has an inductive 
bias towards translation invariance and self-similarity 
due to the weight-sharing in convolutional filters. 
However, these assumptions do not hold for non-

image data, in general. The limitations of the induc-
tive bias in deep learning have been recently illustra-
ted by the benchmark presented in [12]. It contains 
seemingly simple, low-dimensional abstract toy 
examples that are easily solved by humans within 
minutes but are particularly di�cult to be learned by 
means of neural nets.

Lack of continuity
Besides the fact that conversion from continuous 
to discrete data and back is non-trivial and leads to 
loss of information, the absence of continuity ma-
kes it almost impossible to perform gradient-based 
optimization as it is common in deep learning. 

Real syntactical invariance thus requires methods to 
e�ciently process non-euclidean data. Unlike distri-
bution and skill invariance, that demand redefining 
the learning procedure, syntactical invariance can 
be realized on an architectural level, e.g. by means 
of neural layers that generalize convolutions to 
non-euclidean data. 

Scope of This Work

This work provides a survey of developments in 
machine learning that can be characterized as ap-
proaches to increase invariance towards the three 
aspects of AI problems discussed in the previous 
subsection. After providing some historical context 
on symbolic knowledge, it discusses recent de-
velopments in deep learning.

First, di�erent architectural elements are reviewed 
that can be used to increase syntax invariance for 
di�erent data modalities. In particular, we consider 
attention mechanisms that aim at extracting the re-
levant fragment within the incoming data and thus 
reducing the sensitivity to syntactically redundant 
input. Furthermore, capsule-based neural networks 
are investigated as a mean to disentangle visual ent-
ities from their geometric configuration.

We then proceed to review approaches that gene-
ralize neural networks to non-vector data, in parti-
cular graphs and sets, mentioning also results from 
recent studies on group action symmetries that are 
crucial for theoretical understanding about inducti-
ve biases in CNN-like structures.

Finally two learning paradigms, namely meta-
Learning and self-supervised learning, which have 
attracted increasing interest during the recent years 
and have the potential to enhance skill and distribu-
tion invariance, are reviewed. Additionally, we take a 
look at metric learning that has similar potential.
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Relation to Informed Machine Learning

Knowledge is a subject of interest across many 
fields within machine learning. In this section, we 
would like to take a closer look at the field of Infor-
med machine learning, described by von Rüden et 
al. in [81]. The motivation is that it can be conside-
red complimentary to the direction emphasized in 
this work. Speaking in broad terms, Informed ma-
chine learning focuses on questions like “How do I 
restrict my video prediction model to learning only 
physically possible scenarios?” or “How do I tell my 
autonomous driving system that the tra�c conditi-
ons have changed?” In short, it studies approaches 
that adapt general-purpose machine learning mo-
dels to the problem-specific conditions by incorpo-
rating domain knowledge. 

A major di�erence between [81] and the present 
work is in the definition and characterization of the 
term knowledge. While this work agrees with [81] 

about how knowledge relates to information with 
regards to its level of abstraction, we emphasize 
the fluidity and adaptability of it. In other words, 
our emphasis is on the fact that knowledge, once 
gained, can not only be applied to one particular, 
rigid problem setting, but adapts to the peculiarity 
of each given situation. By contrast, von Rüden et 
al. stress the aspect of formalization. After defining 
knowledge as validated information, the authors 
explain how it is characterized by the degree of 
formalization with regards to its representation. This 
generally implies that knowledge can be expressed 
using natural language or a similar system of com-
munication.

As a consequence, von Rüden et al. treat knowled-
ge as input that is usually provided to the system 
from an external source, typically by an expert who 
gained his knowledge from domain experience in-
accessible to the model and with the capability to 
formalize it in a machine-readable way. This input 
is supposed to enhance machine learning models 
by additional, formalized insights that could not be 
incorporated within the training phase.

We, on the other hand, do not treat knowledge as 
external to the system but as something it acqui-
res from possibly heterogeneous input and can 
be applied in the context of di�erent scenarios. 
Therefore, rather than investigating techniques that 
leverage external, formalized inputs within machine 
learning models, we focus on architectural devices 
and learning paradigms that permit us to learn mo-
dels in a way such that adaptation to new, unseen 
scenarios is carried out as seemlessly as possible. 

As an example, consider again the camel/cow 
classification problem from before. Recall that the 
problem consists of building a classification system 
that tends to wrongly include the semantically ir-
relevant scenery into the class assignment. Looking 
at the problem from the point of view of Informed 
machine learning, we would ask ourselves how to 
appropriately formalize these changes in scenery 
and how to communicate them to the model. By 
contrast, from the perspective of invariance, we are 
more interested in training the model in such a way 
that the background is not taken into account when 
the classification is performed.

That is not to say that we expect invariance-ba-
sed knowledge to supersede Informed machine 
learning at some point. On the contrary, we expect 
that these two fields will complement one another 
in the future. It is thus important to be aware of the 
di�erence in how knowledge is defined and cha-
racterized in these two related, but distinct research 
fields.
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Neural Symbolic 
Integration
As stated in the previous section, the transition from 
informed to knowledge-based AI heavily depends 
on how invariant they become. Logical reasoning 
can provide mathematically sound invariance to 
tricky situations. For example, symbolic logic has 
been used to define properties over the whole sys-
tem using formal methods. This ensured that the 
software is safe against known risky behaviours. 
Symbolic reasoning inherently builds upon invariant 
properties that are mathematically true. Thus, for AI 
to be knowledgeable, it needs absolute invariance 
to show common sense (trivial situations) and ex-
pert behaviour as well.

Early approaches in reaching invariance hence re-
lied on integration of the connectionist approaches 
with symbolic reasoning. However, in recent years 
and in line with the success of deep learning, re-
search emphasis has shifted towards achieving inva-
riance by means of design choices in the connec-
tionnist system itself, without relying on additional 
guidance from symbolic AI. This section provides 
an overview of techniques that o�er invariance via 
Neuro-Symbolic Integration (NSI), before we can 
dive into the recent, purely connectionnist approa-
ches later on.

Traditionally, an artificial neural network (ANN) was 
understood as a connectionist system that acquired 
expert knowledge about the problem domain after 
training (invariance to the skill). ANNs required raw 
data and were able to generalize to unencountered 
situations. However, the obtained knowledge was 
hidden within the acquired network architecture 

and connection weights. Symbolic systems, on the 
other hand, utilized complex and often recursive 
interdependencies between symbolically repre-
sented pieces of knowledge (invariance to the data 
distribution). Realizing the machine learning bottle-
necks of using any of these paradigms in isolation, 
integrated Neuro-Symbolic systems were proposed. 
These hybrid systems were expected to combine 
the two invariances–skill and data distribution–to 
make the combined system robust to both.

Earlier methods of Neuro-Symbolic systems ad-
dressed the Neuro-Symbolic learning cycle as de-
picted in Figure 2 [4]. A front-end (symbolic system) 
fed symbolic (partial) expert knowledge to a con-
nectionist system (ANN) that possibly utilized the 
internally represented symbolic knowledge during 
the learning phase (training). Knowledge extracted 
after the learning phase was fed back to the sym-
bolic system for further processing (reasoning) in 
symbolic form.   

Later, [24] described the Neuro-Symbolic system 
as a framework, where ANNs provide the machi-
nery for parallel computation and robust learning 
(invariance to noise), while symbolic logic provides 
an explanation of the network models. These ex-
planations facilitate the interaction with the world 
and other systems (invariance to skill). It is a tightly-
coupled hybrid system that is continuous (ANN) but 
has a clear discrete interpretation (logic) at various 
levels of abstraction. These were able to extract lo-
gical expressions from trained neural networks and 
used this extracted knowledge to seed learning in 
further tasks. In other words, neural networks were 
used to tackle the invariance to the noisy data and 
the symbolic logic was used to obtain the invarian-
ce to skill. And as a hybrid model, it was expected 
to solve knowledge-based tasks. 

Symbolic System Connectionist System

Representation

Expert Knowledge

Refined Knowledge

Extraction

Reasoning Reasoning

Training

Figure 2: Neuro-Symbolic learning cycle. Source: [4]
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deduction, and abduction) with the brain method of 
making mental models. Computationally, it addres-
sed the integration of logic, probabilities, and lear-
ning. This led to the development of new models 
with the objective of robust learning (invariance to 
data distribution) and e�cient reasoning (invariance 
to skill). Some success was achieved in various do-
mains like simulation, bioinformatics, fault diagno-
sis, software engineering, model checking, visual 
information processing, and fraud prevention [16, 
17, 25].

In parallel, another approach was using methods 
like probabilistic programming [29] for the genera-
tive ML algorithms like Bayesian ML. Probabilistic 
programs are functional or imperative programs 
with two additional abilities: (1) obtain values at ran-
dom from distributions, and (2) condition values of 
variables via observations. This allows probabilistic 
programming to understand the program’s statisti-
cal behaviour. They can also be used to represent 
probabilistic graphical models [42] which in turn 
are widely used in statistics and machine learning. 
These models have diverse application areas like 
information extraction, speech recognition, com-
puter vision, coding theory, biology and reliability 
analysis. 

In the last decade, Neuro-Symbolic Integration fa-
ced many challenges and contributions [26]. Promi-
nent yet not fully solved challenges are as follows: 

• Mechanisms of structure learning: Symbolic 
logic like hypothesis search at concept level 
(ILP) vs statistical AI using iterative adaptation 
processes. 

• The learning of generalization of symbolic rules 

• E�ective knowledge extraction from large-scale 
networks for purposes like explanation, lifelong 
learning, and transfer learning 

In contrast to early approaches using first order 
logic, there was a shift towards using non-classical 
logics [8] e.g. Temporal Logic [64], Modal Logic [15], 
Intuitionistic Logic [75], Description Logic [45], and 
logic of intermediate expressiveness e.g. Descrip-
tion Logic [45], Inductive Logic Programmming 
using propositionalization methods [9], Answer-Set 
Programming [52], Modal logic [15] or Propositional 
Dynamic Logic [34].

Traditionally, Neuro-Symbolic integration was emp-
loyed to integrate cognitive abilities (like induction, 
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Recent Developments

Innovations in Neural Network 
Architecture

Attention

Human beings can focus on a specific area in the 
field of view or recent memories to avoid over-con-
suming energies. Inspired by the visual attention of 
human beings, the attention mechanism in deep 
learning is a concept that summarizes approaches 
to extract the most informative subsets from sets 
of data. It can aid in distilling the essential content 
from data, making the model thus more invariant to 
how the data is organized syntactically.

Attention has risen to popularity in neural machine 
translation (NMT). Many classical NMT approaches 
are based on an encoder-decoder architecture, 
where the encoder maps phrases word by word 
to hidden state vectors and the decoder is trained 
to model the probability of phrases in the output 
languages conditioned over these vectors. Both the 
encoder and the decoder are typically realized in a 
recurrent manner. The translation is then formula-
ted as a likelihood maximization given the probabi-
listic language model of the decoder and the condi-
tioning over the hidden states.

One problem with this approach is that it does not 
account for sentences of di�erent lengths. In long 
sentences, the semantic context for each word 
spreads out di�erently from shorter sentences. To 
account for this, the authors of [5] have proposed to 
include an attention mechanism that maps a subset 
of the hidden state vectors in an encoded sentence 
to a fixed-length context vector which is then fed 
to the decoder instead of inputting the hidden state 
vectors directly. The attention is implemented as a 
weighted sum of normalized exponential functions.

In a work on transformer architectures [76], atten-
tion is defined more formally as a function In a work on transformer architectures [76], attention is defined more formally as a function

Rdk×nq × Rdk×nk × Rdv×nk → Rdv×nq ,

Q,K,V �→ Attention(q,k,v).
(9)

The columns of Q,K,V are called queries, keys and values, respectively. This function computes
for each query qi an attention vector ai by returning a weighted sum of all values, i.e.

ai =

nk∑
j=0

αi,jvj . (10)

The weights are determined from some measure of similarity between the queries and keys. A
weight αi,j is high, if qi and kj are similar according to the measure, and close to 0 otherwise.
In neural networks, attention blocks can be used in different ways. A fixed number of query
vectors could be implemented as trainable parameters of the attention blocks that receive sets of
key-value pairs as an input and return an attention value as an output.

The query-key-value function in Eq. (9) gives rise to three categories of attention mechanisms,
namely spatial attention, self-attention and channel-wise attention.

Spatial attention imitates human visual attention in a way such that the network is able to
focus on significant semantic areas in input images for final decision makings. Queries describe
ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton
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ultimate classification or detection results, while values describe pixel-level image areas and keys
are feature maps extracted by convolutional neural networks (CNN). For instance, the image
captioning work [86] is based on a similar principle as the NMT approach [5] described above, but
the attention layer is used to extract important regions from the input image, rather than phrases
from a sentence. Many works use spatial attention concepts to improve detection performance
or enhance interpretability [40, 61].

Another important special case of attention in the sense of Eq. (9) is self-attention, in which
Q = K = V holds. Self-attention computes a representation of an input tuple of feature vectors
based on their similarity between each other [76, 65]. This concept resembles the non-local mean
in image processing. [83].

Channel-wise attention is used predominantly in computer vision tasks by weighing channels
of convolutional layers. Similar to the aforementioned spatial attention, queries describe final
classification or detection outputs, while keys and values are feature outputs, extracted from
each channel of convolutional layers, because the channels are known to be activated by specific
image patterns. For example, the work [94] considers CNN channel features in a pedestrian
detection task and observes that different channels respond to different body parts.

An attention mechanism across channels is employed to represent various occlusion patterns
in one single model, such that each pattern corresponds to a combination of body parts. The
adjusted occlusion features focc can be written as

focc = ΩTfchn, (11)

where Ω represents the weights on channel features fchn. Likewise, the work [37] uses channel-
wise attention to aggregate the information from the entire receptive field.

4.1.2 Capsules

The original motivation behind capsules was to disentangle visual entities and their geometric
relation to each other. Early works described capsules as neural modules consisting of recogniton
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and generation units. Both kinds of units are realized via hidden convolutional layers. Fig. 3
depicts a capsule layer as described in [35]. In the transforming autoencoders introduced by
that work, the recognition units process the image at its input and returns two parameters, a
probability p that a particular entity is present in the picture, and a vector T of pose coordinates

(Fig. 3: T =
[
x y

]�
). These values are passed on to the generation units, along with a vector

∆T that describes the change in pose (Fig. 3: T =
[
∆x ∆y

]�
). As a result, the generation

units create a new image from the visual entities and the new poses created from T and ∆T . The
contribution of each capsule to the generated output is determined by the presence probability
p.

It is known that the features extracted by convolutional neural networks become more complex
and expressive with increasing number of layers [47]. This due to the translationally equivariant
nature of convolutional filters as well as the fact that different semantic features appear in different
constellations throughout the training data. This is also the case for capsule neural networks but
the effect is reinforced by the additional pose information provided during the training process.

As an illustrating example, assume that we want to train a transforming autoencoder with
images of faces under different pose transformations. This kind of data is typically available and
readily labeled in publicly accessible datasets. During training, the output image would contain
the result of the change in pose. Different facial features such as mouth, ears, eyes or nose will
behave differently under a given pose transformation and thus be captured by different capsules.
The contribution of each capsule to the generation at the output of the transforming autoencoder
is determined by p. If the facial feature modeled by a capsule is absent from the image p should
be close to 0.
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Invariance in Di�erent Data Types

Neural Set Processing

Sets are one of the most fundamental non-euclide-
an data types. They appear in classical combinato-
rial problems that are known from theoretical com-
puter science, but also in fields like computer vision 
in the form of, for instance, point clouds. As such, 
they occupy a special position within non-euclidean 
data as essentially all other practically relevant data 
types can be derived from sets by adding additio-
nal structure. For instance, a word is a set of letters 
equipped with an order, a graph is a set of nodes 
equipped with a pairwise relational structure. Ma-
king neural networks capable of dealing with sets 
thus potentially renders them applicable to all kinds 
of data that can be derived from a set.

Unlike elements of a vector space, sets can be of 
di�erent cardinalities and do not have a natural or-
der. To process sets, a neural network should thus be 
able to handle inputs of di�erent sizes and be inva-
riant to permutations. This permutation invariance is 
an elementary inductive bias in set processing and 
must be considered both when neural networks pro-
cess sets as their input or return sets as their output.

Since recurrent neural networks (RNNs) can handle 
sequences of di�erent lengths, they have also been 
employed to process sets. In order to achieve per-
mutation invariance, attention has been used. For 
instance, the work [79] describes a system where 
an LSTM generates queries to compute attention 
vectors from sets. The technique is employed for 
combinatorial tasks such as sorting. However, pure-
ly feed-forward structures have also been used for 
set processing, e.g. by generalizing the convolution 
operation to sets [50].

An important theoretical result on permutation inva-
riance has been provided in [90]. Given a function

A capsule layer can be thus viewed as an architectural device to decompose the input into
its semantic components. Several capsule layers can be stacked to capture features of increasing
complexity.

While capsule neural networks, like convolutional nets are by design an instrument for visual
data, it is interesting how they incorporate different data modalities into the learning process.
Recent capsule architectures are capable of combining euclidean with symbolic representations.
For instance, the Stacked Capsule Autoencoder [44] decomposes images into sets of objects and
then uses set processing methods to organize the sets into constellations of objects.

4.2 Invariance in Different Data Types

4.2.1 Neural Set Processing

Sets are one of the most fundamental non-euclidean data types. They appear in classical combina-
torial problems that are known from theoretical computer science, but also in fields like computer
vision in the form of, for instance, point clouds. As such, they occupy a special position within
non-euclidean data as essentially all other practically relevant data types can be derived from sets
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can be derived from a set.

Unlike elements of a vector space, sets can be of different cardinalities and do not have a
natural order. To process sets, a neural network should thus be able to handle inputs of different
sizes and be invariant to permutations. This permutation invariance is an elimentary inductive
bias in set processing and must be considered both when neural networks process sets as their
input or return sets as their output.

Since recurrent neural networks (RNNs) can handle sequences of different lengths, they have
also been employed to process sets. In order to achieve permutation invariance, attention has
been used. For instance, the work [79] describes a system where an LSTM generates queries to
compute attention vectors from sets. The technique is employed for combinatorial tasks such as
sorting. However, purely feed-forward structures have also been used for set processing, e.g. by
generalizing the convolution operation to sets [50].

An important theoretical result on permutation invariance has been provided in [90]. Given
a function

f : X → R,
X �→ f(X),

(12)

where X is the set of sets containing elements of a countable set X, it can be shown that f is
invariant to permutations of its argument, iff it can be written as

f(X) = ρ

(∑
x∈X

φ(x)

)
, (13)

with ρ : R → R and φ : X → R being appropriate transformations. This result provides an
easy-to-implement guideline in designing models for set processing.

Generally, attention is a popular approach in handling sets. The reason is that attention
modules can be used to implement functions of the form in Eq. (13) [48].
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with ρ : R → R and φ : X → R being appropriate transformations. This result provides an
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Generally, attention is a popular approach in handling sets. The reason is that attention
modules can be used to implement functions of the form in Eq. (13) [48].
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transformations. This result provides an easy-to-im-
plement guideline in designing models for set pro-
cessing.

Generally, attention is a popular approach in hand-
ling sets. The reason is that attention modules can 
be used to implement functions of the form in 
Eq. (13) [48].

Graph Neural Networks

Like sets, graphs generalizes euclidean data types 
and at the same type can be used to describe a va-
riety of knowledge representations, such as social 
networks, multi-view images or molecule structu-
res. The survey [85] provides a comprehensive over-
view over the recent trends in Graph Neural Nets 
(GNN). A GNN can refer both to an intra-graph fra-
mework, that operates on a node or edge level, e.g. 
for segmenting a graph into semantically distinct 
clusters, as well as an inter-graph framework, that, 
for example, performs classification of adjacency 
matrices. Overall, intra-graph frameworks are less 
common. A noteworthy example is [41] that pre-
sents a semi-supervised classification architecture 
that operates on partially labeled graph nodes.

Graph neural networks have been realized both by 
recurrent and feed-forward architectures. 

• Recurrent GNNs typically process each   
node by a recurrent unit such as a Long-term 
Short Memory (LSTM) or a Gate Recurrent Unit 
(GRU). Each unit receives inputs from the units 
corresponding to its neighboring nodes. Works 
in this category, such as [13] or [51] belong to 
the pioneering approaches of GNNs [85]. 

• Convolutional GNNs aim at generalizing the 
concept of convolutions from signals defi-
ned on regular grids to signals on graphs. 2D 
images, for instance, can be viewed as a special 
case of graphs, where each pixel is described 
by a node and the neighboring pixels constitute 
the neighborhood of adjacent nodes. Graph 
convolutions, like regular ones, can be carried 
out in the spatial [57, 87, 78] and the spectral 
domain [11, 49, 41], by applying an appropriate 
transform of the graph data. One important 
question of ongoing research in the context of 
Convolutional GNNs is the design of appropria-
te pooling layers [19]. 

• Similarly, attention based mechanisms have also 
been employed [77]. 

GNNs have been widely applied to non-supervised 
learning tasks, such as graph embedding [63] and 
graph generation [10].
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Group Action Symmetries

As we have seen, considerable e�ort is put into ge-
neralizing convolutions to data structures such as 
graphs, sets or manifolds. This is not without a rea-
son. Weight sharing in convolutional layers of deep 
networks without doubt provides a strong prior for 
the most common deep learning applications [74]. 
While it is not entirely understood what exactly it 
is about convolutional neural nets that make them 
capture the essential information from visual data, 
robustness towards certain transformations seem to 
play an important role in it [53]. Most prominently, 
convolutions are equivariant to spatial translations, 
which is advantageous for visual data, as transla-
tions typically have little impact on the semantic 
content of an image. 

However, if we want to apply deep learning as suc-
cessfully to non-image inputs, we need to general-
ize these kinds of symmetries to more exotic types 
of data which turns out to be tricky. Nevertheless, 
some theoretical results on this matter have been 
presented in [66]. Specifically, the work discusses 
how parameter sharing induces equivariances with 
respect to some exemplary group operations on 
the input, such as rotations and permutations. Later, 
the work [43] has claimed some stronger results, by 
showing that a convolutional structure is not only a 
su�cient, but also a necessary condition for equiva-
riance with respect to certain group actions.
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Recent Trends in Learning Paradigms

Meta-Learning

Meta-Learning refers to a class of approaches in 
predominantly supervised learning settings that 
can be vaguely described as “learning to learn” [21]. 
Traditional supervised learning problems are typi-
cally formulated in terms of training data and test 
data, where the training data is used to optimize a 
parameterized function for classifying or regressing 
test data samples that are assumed to be su�cient-
ly similar to the training data in terms of labeling 
and statistics. By contrast, in meta-learning, once 
a model has been trained, it is not directly used to 
predict labels of unseen data samples, but rather to 
once again learn the prediction on a small unseen 
data-set. This field of study has considerable overlap 
with few-shot classification [89, 80].

Meta-learning problems are often framed in terms 
of support sets and query sets. A training set 
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4.3.1 Meta-Learning

Meta-Learning refers to a class of approaches in predominantly supervised learning settings that
can be vaguely described as ”learning to learn” [21]. Traditional supervised learning problems
are typically formulated in terms of training data and test data, where the training data is used to
optimize a parameterized function for classifying or regressing test data samples that are assumed
to be sufficiently similar to the training data in terms of labeling and statistics. By contrast, in
meta-learning, once a model has been trained, it is not directly used to predict labels of unseen
data samples, but rather to once again learn the prediction on a small unseen data-set. This field
of study has considerable overlap with few-shot classification [89, 80].

Meta-learning problems are often framed in terms of support sets and query sets. A training
set

Xtrain = {(S1,Q1), . . . , (SNtrain
,QNtrain

)} (14)

contains Ntrain pairs of support and vector sets. A meta-learning framework uses Xtrain to
generate a deep learning model that can be easily trained on the support set of a new, unseen
pair (Stest,Qtest), such that it generalizes to the samples in Qtest, even when the number of
samples in Stest is small, and, in the case of classification, contains classes that have not been
observed in the training set. It is reasonable to assume that for any support/query pair the
probability distributions from which the samples have been drawn are the same for the support
and the query set. For classification problems, the same holds for the classes that should coincide
for the support and query set of one (Q,S)-pair, but not necessarily across all pairs. Since
training is performed twice, in the following, we refer to the first stage of training, i.e. on Xtrain,
as training, and the second stage, i.e. on (Qtest,Stest) as adaptation.

Typically, the models are parameterized by a task-general parameter vector θ and a parameter
vector ϑi that is specific to one particular support/query set pair (Qi,Si). The aim of meta-
learning is to use Xtrain to learn a θ that is as general as possible, such that inferring ϑtest from
a new, unseen support set Stest requires as little effort and data as possible (fast adaptation).

In [88], three types of meta-learning approaches have been identified. Metric-based methods
learn an embedding space parameterized by θ in which the classes are well separable across
all of Xtrain w.r.t. some distance measure. An additional, simple proximity-based classifier
parameterized by ϑi is learned jointly for each i ∈ {1, . . . , Ntrain}. Recent examples of this type
of meta-learning models are [89, 60] and [73].

Gradient-based methods minimize a measure of expected non-optimality, such that adaptation
requires only few small gradient steps. Prominent examples include [22, 88] as well as [31] and
[2].

The more recent class of Amortization methods relies on inference networks that predict the
task-specific parameters ϑi [30].

Additionally, to these three classes, remarkably many meta-learning mechanisms rely on re-
current models, since meta-learning can be phrased as a sequence-to-sequence problem [67, 56]

4.3.2 Self-supervised Learning

Supervised learning gives us the means to solve tasks for which labels are available in sufficient
quantities and variations. However, the acquisition of the required annotations is usually as-
sociated with great effort and high costs. Meanwhile, a lot of information in the data remains
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Additionally, to these three classes, remarkably 
many meta-learning mechanisms rely on recurrent
models, since meta-learning can be phrased as a 
sequence-to-sequence problem [67, 56]

Self-supervised Learning

Supervised learning gives us the means to solve 
tasks for which labels are available in su�cient 
quantities and variations. However, the acquisition 
of the required annotations is usually associated 
with great e�ort and high costs. Meanwhile, a lot of 
information in the data remains unexploited, labels 
that are basically free. In contrast, self-supervised 
methods try to exploit this untapped potential. Self-
supervised learning is an important tool in training 
skill-invariant models. Since data is not assumed to 
be consistently labeled, the model is not trained 
with a specific task in mind.

The general goal is to learn how to encode objects, 
such as words, images, audio snippets, graphs, etc., 
into representations that contain the essential infor-
mation in a condensed form and, thus, can be used 
to e�ciently solve multiple downstream tasks. To 
achieve this goal, self-supervised methods formula-
te tasks for which the labels are automatically provi-
ded instead of relying on human-annotated labels. 
Typically, the performance on this self-supervised 
task, often called pretext task, is not important. The 
actual goal is that the intermediate representations 
of the trained model encode high-level semantic 
information. The challenge is to design this pretext 
task in such a way that high-level understanding is 
necessary to solve it. One class of self-supervised 
methods formulates the objective as a prediction 
task, where a hidden part of the input must be deri-
ved from other parts. This objective comes in many 
flavors, such as predicting a word in a sentence 
from context [55], [18], inpainting [62], colorization 
[93] or predicting future frames in a video which will 
be accessible in subsequent time steps [72].
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Another class of methods solves prediction tasks 
in learned representation spaces; for example, the 
relative localization of patches [20], [58], the natural 
orientation of images [27] or the geometric trans-
formation between images [1], [91], [92]. The poten-
tial advantages of the latter techniques are that they 
have access to the entire input and do not have to 
learn details at the image level that are irrelevant for 
understanding image semantics.

In a broader sense, generative models like auto-
encoders and generative adversarial networks [28] 
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where m > 0 is a threshold value. Contrastive embedding has been successfully applied to
learning similarity of interior design images [6].

Alternatively triplet loss chooses three samples xa,xp,xn where xp (positive) is assumed to
be similar to xa and (anchor) and xn (negative is assumed to be dissimilar from it). Based on
these assumptions, the loss function
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Triplet loss has been successfully employed to face recognition tasks [70], among others.
More recent works propose more sophisticated loss functions, e.g. Lifted Structured Feature

Embedding [59], Multi-class n-pair loss [71] or angular loss [82].

5 Conclusion

Knowledge can be expected to play a key role in deep learning and AI developments of the years to
come. Many works have investigated the concept of knowledge by emphasizing its interpretation
as domain or expert knowledge and developing methods that infuse complementary, problem-
specific insights into general-purpose machine learning algorithms. The research questions this
type of works tries to answer usually relate to adapting a given model to a specific problem or
situation.

By contrast, many recent trends in machine learning research put the machine learning models
themselves at the center of interest, rather than the diverse application scenarios they can be
applied to. This shifts the focus from adaptation to adaptability, and to the challenge of designing
the models in a way such that the effort involved in adapting them can be minimized.

Motivated by these developments, we conclude that the decisive facet of knowledge in advanc-
ing the field is that of invariance. Not incidentally, it coincides with definitions from knowledge
management. Invariance can refer to different aspects of a machine learning model and, on a
low-level, is already a design principle of well-established neural architectures. However, in order
to interpret, process, represent or generate knowledge with machine learning, we need to achieve
invariance in a broader and more abstract sense. This is a gradual process as there is no clear
boundary at which invariance of skill, distribution or syntax is achieved.

As machine learning models become increasingly invariant, one expects to achieve and enhance
the following properties of future industrial and societal developments.

• Small data size: One fundamental challenge in real-world application is that the size of
data available for training an appropriate machine learning model is often too small. This
is an obstacle researchers and practitioners face all too often, in particular when they need
to apply their model to real-world problems where gathering and annotating data is costly
and publicly available datasets do not exist. By leveraging the advantage of capturing or
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Small data size

  One fundamental challenge in real-world 
applications is that the size of data available 
for training an appropriate machine learning 
model is often too small. This is an obstacle 
researchers and practitioners face all too of-
ten, in particular when they need to apply their 
model to real-world problems where gathering 
and annotating data is costly and publicly avai-
lable datasets do not exist. By leveraging the 
advantage of capturing or representing intrin-
sic invariance in data, we expect that models 
can be learned on small, inconsistent or insuf-
ficiently labeled datesets. That way, the bottle-
neck of industrial applications can be resolved. 

Human-like intelligent system 

  Invariance is crucial in human-centric enginee-
ring. The ways humans interact with machines 
is unique to every user. Systems that interact 
with humans in a natural and intuitive way thus 
require the capability to adapt to a large variety 
of individual traits, such as pronunciation, phy-
sical features or design preferences. By be-
coming increasingly invariant, human-centric 
systems could reduce their sensitivity to such 
peculiarities, for instance by permitting models 
that are trained on a limited set of users to 
adapt to new human subjects with their own 
unique habits and preferences. 

Multi-purpose intelligent systems

  Autonomous systems can be expected to be-
come more versatile and universally applicable 
in the future, a trend that can already be obser-
ved today. To this end, they need the capability 
to perform di�erent tasks and adapt to diverse 
situations which can be only achieved with a 
certain degree of invariance. 

Conclusion
Knowledge can be expected to play a key role in 
deep learning and AI developments of the years to 
come. Many works have investigated the concept 
of knowledge by emphasizing its interpretation as 
domain or expert knowledge and developing met-
hods that infuse complementary, problem-specific 
insights into general-purpose machine learning al-
gorithms. The research questions this type of works 
tries to answer usually relate to adapting a given 
model to a specific problem or situation. 

By contrast, many recent trends in machine lear-
ning research put the machine learning models 
themselves at the center of interest, rather than the 
diverse application scenarios they can be applied to. 
This shifts the focus from adaptation to adaptability, 
and to the challenge of designing the models in a 
way such that the e�ort involved in adapting them 
can be minimized.

Motivated by these developments, we conclude 
that the decisive facet of knowledge in advancing 
the field is that of invariance. Not incidentally, it 
coincides with definitions from knowledge ma-
nagement. Invariance can refer to di�erent aspects 
of a machine learning model and, on a low-level, 
is already a design principle of well-established 
neural architectures. However, in order to interpret, 
process, represent or generate knowledge with ma-
chine learning, we need to achieve invariance in a 
broader and more abstract sense. This is a gradual 
process as there is no clear boundary at which inva-
riance of skill, distribution or syntax is achieved. 

As machine learning models become increasingly 
invariant, one expects to achieve and enhance the 
following properties of future industrial and societal 
developments. 
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