
White Paper

A Structured Approach

Trustworthy
Autonomous/Cognitive Systems

2

Trustworthy Autonomous/Cognitive Systems –
A Structured Approach

Authors

Dr. Henrik J. Putzer

fortiss GmbH
Guerickestr. 25
80805 München

putzer@fortiss.org

Dr. Ernest Wozniak

fortiss GmbH
Guerickestr. 25
80805 München

wozniak@fortiss.org

3

Content

Abstract 4

Introduction 5

Related Work 6

Key Concepts 7

Autonomous/Cognitive System 7

Trustworthiness and its Analysis 9

Reference Lifecycle 10

Overview 10

Solution Level 13

System Level 13

AI Development 14

AI Blueprint 15

Summary and Future Work 16

References 17

Imprint 18

4

Abstract
Autonomous systems with cognitive features are
on their way into the market. Within complex en-
vironments, they promise to implement complex
and goal oriented behavior even in a safety related
context. This behavior is based on a certain level of
situational awareness (perception) and advanced
decision making (deliberation). These systems in
many cases are driven by artificial intelligence (e.g.
neural networks). The problem with such complex

systems and with using AI technology is that there
is no generally accepted approach to ensure trust-
worthiness. This paper impacting VDE-AR-E 2842-61
“Design and Trustworthiness of autonomous/cogni-
tive systems” presents a framework to exactly fill this
gap. It proposes a reference lifecycle as a structured
approach that is based on current safety standards
and enhanced to meet the requirements of autono-
mous/cognitive systems and trustworthiness.

5

Introduction
Autonomous/cognitive systems are taking over
safety-relevant tasks in many industries, for exam-
ple in the medical, the automotive, or the aviation
industry. Their usage extends beyond limited opera-
tional environment into highly complex one, where
engineered functions operate autonomously. This
resulted in a term, recently used quite extensively,
autonomous systems. These autonomous/cogni-
tive systems (A/C-system), as they are called in this
work, due to the high criticality of functions that
they implement, need some form of qualification
or even certification before being approved for the
market. However, even in cases where a formal
certification is not legally required, national and
international standards provide guidelines and best
practices that aim at minimizing unacceptable risks
for bringing products to market. There are many
standards as such. They either object on disjoint
aspects of system development, complementing
one another, or significantly overlap, presenting
however different strategies to reach desired goals.
An example of the last this could be trustworthy
system design.

Standard IEC 61508 [IEC 61508-1:2010] is a generic
standard to address functional safety of electric,
electronic and programmable elements for all in-
dustries. It looks at risks that evolve from malfunc-
tioning and does not cover the intended perfor-
mance. In IEC 61508 the underlying approach is to
enable qualification by providing a safety case toge-
ther with the product. To generate the safety case,
which is a structured argumentation, IEC 61508 de-
fines a structured approach called safety lifecycle.

An adaptation of this standard for the Automotive
Industry is the ISO 26262 [ISO 26262:2018] which
addresses functional safety of electric, electronic
and programmable elements and risks that evolve
from malfunctioning. Complementary to this is ISO/
PAS 21448 [ISO/PAS 21448:2019] which is also tar-
geting road vehicles. It is focused around the ab-
sence of unreasonable risk due to hazards resulting
from functional insufficiencies (performance) of the
intended functionality or by reasonably foreseeable
misuse by persons. These are referred to as the Sa-
fety Of The Intended Functionality (SOTIF).

This paper argues that these standards do not suf-
ficiently cover the aspects of A/C-systems. First
shortage is due to the important property of the
A/C-systems which is interactive behavior with a
complex environment. This interaction needs to
account for constantly changing surrounding con-
ditions, and consider scenarios that were not even

envisioned when the system was designed. This
paper argues on the need of a new phase in the
overall system design lifecycle, which would en-
compass this concern.

The second deficiency is due to the potential usage
of AI technology to implement autonomous beha-
vior of A/C-systems. NNs which are one exponent
of AI technology represent a promising approach to
cope with the complexity of these future systems,
creating at the same time new demands. While
progress in AI is accelerating, standardization efforts
for safety-critical systems are not keeping up. For
example, ISO 26262 (“Road vehicles – Functional
safety”) does not define how AI can be safely ap-
plied in its domain. This even holds for the updated
version that is currently under revision. Yet, industry
and academia is researching and developing self-
driving cars – of course using AI technology. There-
fore, it is necessary to develop a structured metho-
dology that ensures a sufficient quality level when
developing systems involving AI.

Considering above shortages in current state of the
art, the main goal of this work is to develop a struc-
tured approach, here called reference lifecycle,
which ensures a sufficient quality level. The last
states core part of the evolving VDE-AR-E 2842-61
standard [VDE-AR-E 2842-61:2020], focused on
the specification of trustworthy A/C-systems. The
main criterion for concepts introduced here is their
flexibility, so that it is possible to integrate them into
multiple different existing (safety) standards. It is be-
lieved that such an approach can increase chances
for an acceptance of these new concepts by the
industry and therefore lead to a faster publication of
the new standard.

This work is structured in a following way. Next
section presents related work, focusing on the sa-
fety aspect (a crucial ingredient of trustworthiness
concept defined in this paper) of complex systems,
and the problem of their qualification within engi-
neering approach. Section Key Concepts defines
key concepts used throughout the entire paper.
Following section discusses the main idea which is
a reference lifecycle and overall structured metho-
dology to develop trustworthy A/C-systems. Finally,
the last section concludes this paper and discusses
next steps towards a complete specification of the
structured approach.

6

Related Work
Engineering of trustworthy A/C-systems introduces
new set of problems and challenges which mostly
result from the open environment in which these
systems operate. Closed environment is an implicit
assumption within currently existing standards such
as [IEC 61508-1:2010], [ISO 26262:2018] and [ISO/
PAS 21448:2019]. They all shape an engineering
approach towards development of safety-critical
systems, but without explicit consideration of auto-
nomous and cognitive behavior. This has resulted in
attempts to implicitly use such standards, referring
mainly to their possible connections with AI, which
is widely researched as a technology to implement
A/C-systems. Relatively recent works try to reason
about a safety of AI based solutions by referring into
the mentioned standards. Work from [Rick Salay
(2018)] identifies 34 methods related to unit de-
velopment in ISO 26262 [ISO 26262:2018] part 6
(i.e. part related to Software development) where
27 of them are highly recommended for ASIL D
(Automotive Safety Integrity Level – level of critica-
lity, where D represents the highest level). Authors
show that most of these methods could be applied
to machine learning hence increasing its reliability.
For example, initialization of variables. However, 7
of these methods require adaptation, e.g. semi-for-
mal notations. Henriksson et al. [Henriksson (2018)]
shows how to proceed with such adaptations. [Go-
savi and Conrad (2018)] is also attempting to extract
methods from ISO 26262 which could be used, so
that safety can be introduced in autonomous and
semi-autonomous vehicles. Common thing among
these works is that they all strive to use the standard
as it is and see how existing techniques, coined
mainly for improving safety of Software (SW), could
be reused with slight adaptations, if necessary.

Traditionally, it was discouraged (but not prohibited)
to utilize AI (especially machine learning) for safety-
relevant tasks. For example, Bergmiller’s work on
functional safety in drive-by-wire vehicles states that
neural networks are unsuitable for such a system
[Bergmiller (2015)]. He cites mainly their lack of in-
terpretability and states that their downsides apply
to most other machine learning techniques as well.

Kurd et al. [Kurd, Kelly, and Austin (2006)] propose a
path towards certifying neural networks for safety-
relevant systems. They propose hybrid networks
where symbolic knowledge is inserted into a neu-
ral network and after the learning process, refined
symbolic knowledge is extracted. This approach
avoids the black-box view of traditional neural net-
works at the cost of having to solve the additional
problem of extracting knowledge from the network.

The latter is known to be NP-hard. Furthermore,
Kurd et al. discusses safety criteria of neural net-
works and present them in the form of goal struc-
turing notation. Importantly, authors present also a
safety lifecycle to be applied at the technology le-
vel, based on the ‘W’ model, as they call it. It is rea-
soning about concerns which result from the usage
of hybrid networks. For example, one of the steps in
the lifecycle of Kurd et al. is called Initial knowledge
where initial knowledge is converted into symbolic
forms. Framework proposed in this work does not
collide with the ‘W’ model. In fact, approach of Kurd
et al. could be easily integrated into framework pre-
sented in this work through so called concept of a
blueprint, explained later. Kurd’s PhD thesis [Kurd
(2005)] contains a more detailed discussion as well
as a survey on neural networks in safety critical sys-
tems.

Another proposal towards certifiable neural net-
works comes from Morgan et al. [Morgan et
al.(1996)]. The difference is that their approach hea-
vily focuses on certifying the process of training
the network instead of certifying the network itself.
They also raise a set of questions and guidelines
that a corresponding standard should answer. Rod-
vold [Rodvold (1999)] proposes a different develop-
ment process for neural networks that resembles
the waterfall model of traditional software develop-
ment.

Pulina and Tacchella [Pulina and Tacchella (2010)]
present an approach, where a neural network is
modelled via Boolean combinations of linear arith-
metic constraints in such a way, that the constraints
are consistent if and only if the network is safe.
Therefore, deciding the safety of the neural network
can be answered by finding a satisfying assignment
for the constraints.

What is characteristic about all these works, is that
they are focusing on one, very particular issue, i.e.
employment of AI, especially NNs, in the context of
safety critical systems. Even if some of them explic-
itly refer to standards which define structured ap-
proach, their reasoning is restricted to the level of AI
introduction. They don’t consider the problem from
the broader perspective, i.e. how A/C-systems de-
sign could influence all the levels of an engineering
approach, not just the level of a specific technolo-
gy, i.e. AI, SW or HW technology.

7

Key Concepts
Structured approach to dependable cognitive sys-
tems and dependable AI applications discussed in
this work is based on several key concepts. They
are described in this section and will be referenced
by the description of the trustworthiness reference
lifecycle presented in the follow-up section.

Autonomous/Cognitive System

The term autonomous/cognitive system is used to
focus on functionality and behavior. With this term,
the overall system is addressed, not only the algo-
rithms as the core of behavior generation. Actually,
NNs or more broadly, AI algorithms, might be part
of a cognitive system but are no precondition as
long as the systems shows autonomous/cognitive
behavior. This means that on the technical level, it
is left to the people to decide if standard SW/HW
processes are enough or there exist special needs
that one could deliver only with AI method. Another
term that was introduced, and which similarly as
A/C-systems describe systems that bear behavior,
one would normally associate with human behavi-
or in terms of complexity, these are open context

systems [Burton, Gauerhof, and Heinzemann (2017)].
During the design the capabilities and skills to gene-
rate the behavior of an A/C-system should be deri-
ved from the task share with the user and from the
interaction with other entities in the environment.
These definitions form a separate and early design
phase in a design process of cognitive systems.

The behavior of a cognitive system is defined by the
inputs and outputs of the system. For an illustration
refer to Figure 1 [Putzer, H.J. (2004)]; here the cog-
nitive system is represented as ovals on the right
(the so called body of the cognitive system) in op-
posite to the world or environment where the user
can be found. The environment and the A/C-sys-
tem are connected via inputs and outputs. Between
these input and output arrows, the behavior can be
measured (Behaviour arrow). The behavior is con-
ceptually a function taking the input and generating
the output, considering also the internal state of the
cognitive system.

The behavior generating function is decomposed
into three subfunctions (the so-called knowledge
transformators): Perception, Deliberation and Exe-
cution – which is similar to the decomposition pa-
radigm of “sense-plan-act” in the robotics domain.
These subfunctions are further detailed into skills.
For example, the perception could be structured

A Priori
Knowledge

Out

Cognitive
Structure

World /
Environment

Execution

Deliberation

Perception

In

Action
Plan

Context
Model

Situational
Knowledge

B
e

h
av

io
u

r

• Action Selection
• Priority
• Reflexes
• Precise Control

• Desires & Goals
• Strategy
• Plan
• Trajectory

• Multi-Sensor Data Fusion
• Object Detection
• Object Classification
• Intent Recognition

Figure 1: Cognitive Process

8

along skills of “multi sensor data fusion”, “object
detection”, “object classification” and “intent recog-
nition”.

The body of the cognitive system is structured into
the a-priori-knowledge (inner and darker oval in
Figure 1) and situational knowledge (outer oval). The
a priori knowledge is generated by the knowledge
transformators using their a-priori knowledge du-
ring runtime. This can be understood as an instan-
tiation process of the concepts within the a-priori
knowledge. To do this, each transformator “reads”
primarily in its input area (but may use the whole
knowledge) and writes into the output area. So,
the Perception reads primarily from “in” and writes
to “Context Model” which describes the analyzed
situation the system is in. This might include a re-
presentation of objects in the environment but also
might comprise of abstract objects like distances or
threads. The Deliberation takes the Context Model
and determines what to do and how. A (structured)
action plan is the result of the Deliberation. Last but
not least the Execution takes the Action Plan as pri-
mary input, selects current actions, takes priorities
into account and writes commands to the out area.
The commands in the out area are taken and pro-
cessed by the output to drive actuators and to ma-
nipulate the environment. This model of a cognitive
system represents working model and functional
abstraction for structured approach (trustworthiness
reference lifecycle) discussed in this work.

An A/C-system might include a subset of the
following characteristics:

• recognizes its environment (or parts of it)
through “sensors”,

• knows about the intentions of elements in
its environments (e.g. implements intent
recognition),

• knows about higher level goals
(might even incorporate ethical point of views),

• takes (non-trivial) decisions based on reasoning,

• influences its environment via actuators (distin-
guish from actor in the sense of performer),

• interacts and cooperates with the elements
of its environment,

• influences elements in its environment to better
meet its own goals (e.g. mechanism design),

• shows a certain behavior based on skills, and

• learns even new behavior during runtime.

Examples for A/C-systems are Advanced Driver
Assistance Systems, Automated vehicles or Autono-
mous Robots.

Reliability Availability

=
 T

ru
st

w
o

rt
h

in
es

s

D
ep

en
d

ab
ili

ty

R
A

M
S

P
ro

ce
ss

se
le

c
ti

o
n

 o
f

as
p

e
c

ts

Maintainability

Privacy Usability Ethics Robustness

Safety

• System Safety
• Functional Safety
• SOTIF

• E	ectiveness
• E�ciency
• easy-to-learn
• fun-to-use

• Legal
• Social/Societal
 Concerns

Security

• Confidentiality
• Integrity
• Availability

Figure 2: Aspects forming the metaterm “Trustworthiness“

9

Trustworthiness and its Analysis

The term trustworthiness has no generally accepted
definition. This work considers trustworthiness as a
more generic concept that combines a user defined
and potentially project specific set of aspects. These
aspects include but are not limited to (functional)
safety, security, privacy, usability, ethical and legal
compliance, reliability, availability, maintainability, and
(intended) functionality (see Figure 2).

These non-functional properties, forming trustwort-
hiness concept, are brought into the system by
applying certain methods and by the way in which
the original functional requirements are implemen-
ted. Therefore these characteristics (non-functional
properties) are called “emerging”, i.e. not directly im-
plementable. They need to be built into the product
during design time. Furthermore, these characteris-
tics need to be proven on the basis of process docu-
mentation, the use and implementation of suitable
methods and measures and finally, by the capability
of the designers. In order to address these issues, a
structured process needs to be followed throughout
the whole design cycle of an A/C-system (see Secti-
on – Reference Lifecycle), including the components
that contain NNs or other AI algorithms.

Another challenge is to balance between all poten-
tially conflicting aspects. For example, safety and
security might support or exclude each other. And
traditionally, aspects of security and usability do

conflict. These need to be resolved and balanced
decisions need to be taken.

Implementing a trustworthy system of interest fol-
lows the well-known approach along the reference
lifecycle of the following steps:

 analyze (trustworthiness) hazards and assess
(trustworthiness) risks

 define a (trustworthiness) concept consisting
of (trustworthiness) mitigation measures

 implement (trustworthiness) concept

In every step of a lifecycle, trustworthiness is con-
sidered with the same set of aspects (and scopes).
During the trustworthiness analysis, special care has
to be taken by combining its aspects (safety, secu-
rity, etc.), especially when hazard attributes like in-
tegrity and assurance are combined or when com-
bining aleatoric and epistemic uncertainties. During
the implementation phases this is less relevant.
There the specific performance of the implemented
element is the relevant issue. It relates to integrity/
assurance/uncertainties trough traceability, but
these are no direct input during e.g. the implemen-
tation of a software unit. To reflect this observation
the reference lifecycle takes into account “Trust-
worthiness Performance Level” (TPL) as a one-di-
mensional performance attribute of trustworthiness
requirements.

10

Reference Lifecycle
This section presents an approach towards trust-
worthy A/C-systems. The backbone of this ap-
proach is a system lifecycle discussed in this section
which is the core of further contributions such as
addition of the Solution Level, and concerns related
to AI in a form of AI Design and AI Blueprint con-
cepts.

Overview

An assurance case is a convincing and structured
argumentation based on evidences that the A/C-
system is sufficiently trustworthy. Trustworthiness
with every aspect like safety, security etc. (see
Figure 2) is an emergent property of a system of
interest. It emerges from all activities during the
engineering phase. So the structured argument
that trustworthiness is met needs to be based on
a structured approach of the engineering phase,
which motivates this work. One of the main prob-
lems that prevents A/C-systems from being quali-
fiable, is an unstructured and ad-hoc way of deve-
loping them, especially components that contain

AI technology. These have negative impact on the
ability to compile a structured argument of trust-
worthiness based on evidences. While for classical
software and hardware, process models that ensure
certain level of rigor have been developed, these
are not directly applicable to AI specific systems.
This motivates a definition of a structured lifecycle
which accounts also for AI concerns.

The reference lifecycle discussed in this work co-
vers the Design part of the overall product lifecycle
(see Figure 3). Figure 4 presents the reference life-
cycle. The name, reference lifecycle, signifies its
main purpose, i.e. it can be used as a reference for
a standard that supports assessment approach for
trustworthy systems. It is inspired by and resembles
to certain degree the structure of the safety life-
cycle in IEC 61508 and similarly in ISO 26262.
However, this approach is not restricted to it and

can be adapted to other standards like IEC 61508,
ISO/IEC 15504 (Software Process Improvement
and Capability, SPICE) [ISO/IEC 15504-5:2012], and
ISO/IEC 12207 (Systems and Software Enginee-
ring – Software lifecycle processes) [ISO/IEC/IEEE
12207:2017]. Apart from the process structure, this
framework absorbs also the ISO 26262-like safety
argumentation based on the integrity principle

The reference lifecycle is a phase model that ar-
ranges concepts (e.g. Initiation) into logical depen-
dency sequence. The reference lifecycle is not a
process model. The phases are not to be unders-
tood as a waterfall model. The reference lifecycle
defines the logical flow of activities but is open to
any actual process model (e.g. waterfall, V model,
spiral model). This flow of activities grouped in pha-
ses of the reference lifecycle lead to the design and
implementation of the solution accompanied by its
trustworthiness assurance case.

Starting from the top, first is Initiation phase, which
objects in finding the solution that shall be deve-
loped. At that stage, interfaces, environment and
usage of the solution and last but not least, require-
ments concerning trustworthiness shall be unders-
tood. Also, synchronization with organization and
process framework shall be executed, and finally,

competent team to work on different aspects of the
product shall be setup. Concerning principia of this
phase, it can be related to the Item definition and
Initiation of the safety lifecycle phases, as defined in
ISO 26262.

Next, development at Solution Level expresses one
of the contributions of the overall lifecycle, hence it
is described in more details in a separate section.

Development at System Level is also characteristic
to other standards, listed before, with an exception
that the input to that phase in proposed reference
lifecycle comes from the Solution Level, which
is not present in most other standards. From that
standpoint, system level as defined here has addi-
tional, unique characteristics, which are discussed
more broadly in section – System Level.

Research
& Prototypes

(Series-)
Development Production

Marketing
& Distribution

Operation
& Maintenance

Dismission
& Recycling

Figure 3: Product Lifecycle

11

Activities of the Technology Level are focused on
contributing to the solution, based on a certain type
of technology. Here, refinement of trustworthiness
concept into specific technology that will imple-
ment it, takes place. For hardware and software this
lifecycle refers to the corresponding, well defined
and described activities, specified in existing stan-
dards. For instance, ISO 26262 part 5 thoroughly
describes development at hardware level, and cor-
respondingly, part 6 does the same for software.
Contribution of the trustworthiness lifecycle is that
it puts into consideration AI, and hence introduces
two concepts at this phase, i.e. AI Development and
AI Blueprint. These are discussed in more details,
correspondingly in section AI Development and AI
Blueprint.

The IV&V of the System refers to the concerns of
design verification and validation especially in terms
of its compliance and completeness with regards to
the technical trustworthiness concept. This implies
usage of such methods as system design inspec-
tion, walkthrough, simulation, and from the trust-
worthiness perspective, this is trustworthiness ana-

lysis. The similar purpose as of the previous phase,
guides activities identified for the IV&V of the Solu-
tion. Namely, solution is inspected to verify and vali-
date its compliance and completeness in regards to
functional and trustworthiness requirements.

Next phase, i.e. Acceptance and Release covers
several objectives. This is preparation of the release
documentation which specifies, inter alia, criteria
for the release for production. Next, this is compi-
lation of a trustworthiness assurance case, i.e. how,
over the reference lifecycle, trustworthiness objec-
tives were reached. This requires to deeply and tho-
roughly assess the trustworthiness of the solution
concept. Ultimate objective is to release the solu-
tion for production.

Last step, with tight correspondences to existing
standards, concerns market surveillance and CAPA
(Corrective Action Preventive Action). These are all
activities which focus on the monitoring of a pro-
duct in its operational environment and necessary
reactions to possible malfunctioning and dissatis-
faction of end users resulting from it.

Initiation

Other
Technology

 Development

Trustworthiness Analysis

AI-Development

AI-Blueprint

Development at Solution Level
(Interaction & Skill Concept)

Development at System Level
(Hierarchical Development)

te
ch

n
o

lo
g

ic
al

el

em
en

t

au
to

n
o

m
o

u
s/

co
g

n
it

iv
e

sy
st

em
 o

r
sy

st
em

 o
f

in
te

re
st

so
lu

ti
o

n

IV & V of the System

IV & V of the Solution

Acceptance and Release

Market Surveillance and CAPA

Development at Technology Level

external
elements

back to appropriate
Lifecycle Phase

IV & V
Planning

IV & V
Planning

main logical flow

external flow
(not within AR)

planning flow

hardware

software

artificial intelligence

integration, verification
& validation

HW

SW

AI

IV & V

Figure 4: Reference Lifecycle

12

13

Solution Level

An A/C-system is more than an algorithm that is
categorized as artificial intelligence and that is im-
plemented in one or more elements of the A/C-sys-
tem. To understand the full complexity it is necessa-
ry to take the user of the A/C-system into account
as well as all relevant interfaces and elements in the
environment. Actually this is the level of abstraction
that is called the solution level. The solution level
delineates the whole setting that can be perceived
as an architecture in which the A/C-system is one
element.

The intent of the Solution Level is to generate a
solution concept on the basis of all customer requi-
rements which might – in the first place – include
conflicts. Resolving conflicts and including the use
and environment of the product results in a con-
sistent solution concept. Furthermore the solution
level is the relevant origin of all hazards, because
in most cases hazards do not arise from a system
of interest itself but from setting the system into an
environment.

The definition of the solution concept refers to a
black box model and a white box model:

 The black box model focuses on the inter-
faces, the behavior (including interaction and
cooperation of the A/C-system with other
elements in the solution) and further require-
ments of the A/C-system. One of the crucial
elements of this black box model is to define
the task share between the A/C-system, the
user and other elements. A typical black box
model is the sociotechnical work system.

 The white box model takes a look into the
A/C-system as an element of the solution level
architecture. At this phase of the development
the description is kept at a very abstract level
and remains functional in most cases. The pur-
pose of the white box model is to better un-
derstand the behavioral elements of the A/C-
system. For this purpose the behavior defined
using the black box model is detailed to skills
of the A/C-system describing the mechanisms
of the recognize-act-cycle as the closed loop
between environment and A/C-system. An
example for a white box model is the generic
sense-plan-act model.

At this level the development team shall review
the customer requirements, and all other relevant
material to understand the scope and goals of the
solution. Then, the team shall describe the overall
solution using the defined notation. This description
includes the goals (e.g. in terms of use cases) of
the development, the environment and its relevant
elements including the user, the interfaces of the
system to all relevant elements in the environment,
and the boundaries of the system.

Next, the same team needs to define the black box
model to describe the observable behavior of the
system – item. This description should cover all
relevant aspects of the interaction and cooperation
within the solution. It also needs to define the black
box behavior (input-output-mapping that can be
observed), and allocate behavioral requirements to
other elements in the solution. This black box mo-
del shall be then used to describe the interaction
and cooperation concept. This includes description
of overall tasks of the solution, task share between
item and other elements of the solution (user or
machine, etc.), interaction and cooperation with
other elements, definition of the black box behavior
of the item (input-output-mapping that can be ob-
served), and allocation of behavioral requirements
to other elements in the solution.

Following is the specification of the solution behavi-
or, described as functional chains and including ne-
cessary skills in the machine. This is the mentioned
white box model. Such a description shall include
functional architecture as a partition of the behavior
(recognize-act-cycle), cognitive theory on how to
generate behavior (= mapping between input and
output), and cognitive architecture description.

The development team shall then use the white box
model to describe the internal processes of the sys-
tem. This description shall include functional archi-
tecture of the system, definition of elements accor-
ding to the white box model (e.g. behavior & skills
of the system), definition of interfaces between the-
se elements, and collaboration of these elements
via the given interfaces to generate behavior.

Ultimate outcome of the activities performed at the
solution level should include solution definition,
cooperation concept, functional architecture of the
system, and acceptance criteria for cooperation
and behavior. The last is required aspect of trust-
worthiness concept.

14

System Level

The development at system level is the link between
the definition of the solution (solution level) and
the implementation according to a certain techno-
logy (technology level). In the first place there are
no trustworthiness specific characteristics or acti-
vities. These systems engineering activities can be
organized according to typical systems engineering
standards (e.g. ISO/IEC 15288). The people in charge
of the development at system level should care for
a good design and the application of organizational,
proven and state-of-the-art processes, supporting
processes, architectures, methods and measures.

Taking a detailed look at the system level, the
awareness of trustworthiness induces at least two
aspects that are relevant to achieving trustworthin-
ess in the resulting A/C-system and solution:

• repetitive/iterative application of that part of the
standard to cover the complexity of system-of-
systems as well as complex system architectures

• traceability of trustworthiness attributes throug-
hout all levels of the design hierarchy, including
methods like allocation, decomposition and
segregation

• compilation of the trustworthy assurance case,
and

• design patterns that support verification and AI
properties

The hierarchical design will be very specific to the
A/C-system, its functionality and its domain. For
example in the domain of embedded systems the
functionality along with hardware and software are
closely related even during the development. This
is the nature of embedded systems. For them one
would expect optional system-of-system level in
the higher levels of the hierarchical design, one or
more levels where the sub systems are handled and
finally a level where electronic control units (ECU)
are defined and detailed into the technology level
using hardware, software and (some of the ECUs) AI.

AI Development

Activities of the Technology Level are focused on
contributing to the solution, based on a certain type
of technology. The design of components based on
SW or HW is considered separately within existing
standards, due to the different concerns that these
technologies raise. This work argues that unique
characteristics of AI technology predestine it for

having separate place within the overall lifecycle.
This implies establishment of AI Development phase.

Design and implementation of AI-based solution
resembles to some extent design and implemen-
tation as done with standards SW approach. The-
refore, AI (leaving out the HW which it utilizes) is
sometimes regarded as a special kind of SW. But
AI has different properties which makes it a third
kind of technology aside hardware and software. It
comes along with the new philosophy for design
and implementation, different kind of tooling, and
hence different requirement in terms of knowledge,
useful to work with this technology. This however
imposes challenges, which are not characteristic
to pure SW development. For example, proper AI
algorithm needs to be selected. This step could be
compared to justified selection of programming
language, which shall serve best the implementati-
on of intended functionality, respecting for instance
non-functional concerns such as execution time.
Next, if neural networks are used, their design (e.g.
choice of the number of layers) could be referred
to SW architecture design. However, both solve
different problems and definitely require different
set of skills. Another, significant difference refers to
ultimate implementation. Namely, in SW this boils
down to the coding of atomic SW units specified as
part of the SW architecture. For NN, this is learning
process. How SW units are implemented depends
on the requirements which are attached to them.
On the other hand, there is no explicit requirements
specification for NN. Requirements are implicitly
embodied by the collected data, used for the lear-
ning process, and this data ultimately impacts the
NN implementation. This is definitely a relevant dif-
ference between SW and AI, one that has also huge
implications on how trustworthiness is considered.
Having standard requirements which then could be
attached to SW units, enables proper traceability.
This is not possible for NN. In conclusion, AI reveals
new challenges when compared to SW, both from
the design but also trustworthiness perspective. This
drives the idea of treating its design as a separate
concern within the overall framework.

There are several objectives of AI Development. The
first and most important is the selection of AI techno-
logy which is believed to provide the best solution for
the required functionality. This decision has a relevant
impact on the following activities. One of them is a
choice of an appropriate AI Blueprint (see following
section) and then its adaptation (tuning) and applicati-
on so that it can be effectively used with the selected
AI technology. Having these preconditions, ultimate
objective, i.e. delivery of the AI element together with
all necessary documentation and qualifications to the
system integration and verification can be fulfilled.

15

Inputs to AI Development phase these are functional
and non-functional requirements allocated to the
element, and trustworthiness attributes. The first dri-
ve the design of a solution. The second has substan-
tial impact on the reasoning about the trustworthin-
ess qualification of the designed AI component.

AI Blueprint

The development or training of AI components
does not fit into existing process models (e.g. like
for classical software) due to the specific nature of
the AI methodologies. Even inside the field of AI,
different methodologies and solution concepts can
have very specific requirements towards the under-
lying process model. For example, a deep convo-
lutional neural network for supervised learning has
almost nothing in common with STRIPS planning,
a purely symbolic automated planning approach.
This urges for the new approach in which specific
characteristics of certain AI technology are targeted
by design process. In consequence, the framework
introduces concept of AI Blueprint and the need of
defining specific blueprint, depending on the type
of AI technology being used. This means that stan-
dard should be flexible enough to enable incorpo-
ration of blueprints which use specific methods or
narrow set of methods.

The AI Blueprint can be interpreted as a kind of
template process that can be applied to the relevant
kind of AI methodology. It is characterized by Input
and Output Interfaces, Structure (i.e. design phases)

and Qualifications. The execution of AI Blueprint
provides an AI element characterized by a predefi-
ned quality level, including guarantee to meet defi-
ned dependability requirements.

In order for the AI Blueprints itself to be incorpo-
rable within the overall design lifecycle, there exist
two different forms of requirements imposed on
them. The first one is the technical requirement,
that all AI Blueprints possess required interfaces, in
order to plug them into the development lifecycle.
This means that they process the properties and
artifacts that are handed down to them, as well as
that they deliver the required results back to the hig-
her levels.

As inputs of the AI development the requirements
and trustworthiness requirements with additional
attribute like TPL are provided by the system level,
and as output of the AI development the system
level expects the AI element with the value for un-
certainty confidence indicator (UCI) which indicates
trustworthiness of AI element achieved through
different methods, metrics and measures used.

Figure 5 presents an example of an AI Blueprint
dedicated to develop AI Element, using NNs and
supervised learning. In this case, similarly as it is
advocated in ISO 26262 for SW or HW design, this
AI Blueprint is based on the V-model. The last of
course is not the required property of AI Blueprint.
It adheres to the above requirements, i.e. it accepts
two input elements, i.e. trustworthiness require-
ments and TPLs. Similarly, an output of this AI Blue-
print delivers AI element together with UCI.

Trained Model

Data Preparation

NN Design

Training Training Verification

NN Validation

Functional Verification

Design Verification

Initiation
Validation

Design phase verification

System Design System Integration

TTrraaiinniinngg

HHyyppeerrppaarraammeetteerr OOppttiimmiizzaattiioonn

Verification

Verification

Verification

Design phase verification

AI-Element
Trustworthiness Requirements
+ TPL

Training Set Validation Set
(to decide end of epoch)

Validation Set

Test Set

Test Set

Design phase verification

Requirements
Trustworthiness Argument

+ UCI

NN Deployment

After Release

Figure 5: AI Blueprint for Supervised Learning of NNs

16

Summary and Future Work

This work described the trustworthiness reference
lifecycle. The main contribution of this work in re-
gard to existing approaches or standards lies in the
overall structure of the trustworthiness lifecycle.
These are especially:

 addition of one level above the engineering of
the system of interest, i.e. solution level

 enablement of approaches based on integrity
and assurance

 introduction of “AI” as a 3rd kind besides soft-
ware and hardware, resulting in the concepts
of AI Development and AI Blueprint.

There are several parts of the overall framework
which still require deeper consideration and ex-
planation. These will be considered in the following
series of papers. This is more exhaustive specifica-
tion of the AI Blueprint concept, where the most
important is introduction and deeper discussion
of examples of blueprints that could be used. In
parallel, deep discussion over the definition of the
confidence parameter will be presented. The last
will allow to reason about the trustworthiness quali-
fications of the AI design. This is so called concept,
briefly introduced in this paper.

This whitepaper inspired the VDE-AR-E 2842-61
“Design and trustworthiness of autonomous/cog-
nitive systems”. This standard is (partially) available
via the VDE Verlag (www.vde-verlag.de) and will be
finalized in its first version soon.

17

References
[Bergmiller (2015)]
Bergmiller, P. J. 2015. Towards functional safety in
drive-by-wire vehicles. Springer.

[Burton, Gauerhof, and Heinzemann (2017)]
Burton, S.; Gauerhof, L.; and Heinzemann, C. 2017.
Making the case for safety of machine learning in
highly automated driving. 5–16.

[IEC 61508-1:2010]
Functional Safety of Electrical/Electronic/Pro-
grammable Electronic Safety-related Systems.

[Gosavi and Conrad (2018)C
Gosavi, M.A., R. B., and Conrad, J. 2018. Application
of functional safety in autonomous vehicles using
ISO 26262 standard: A survey. In IEEE, Southeast-
Con.

[Henriksson (2018)]
Henriksson, J., B. M. E. C. 2018. Automotive safety
and machine learning: Initial results from a study on
how to adapt the ISO 26262 safety standard.
In IEEE/ACM 1st International Workshop on Soft-
ware Engineering for AI in Autonomous Systems
(SEFAIAS).

[ISO 26262:2018]
Road vehicles – Functional safety

[ISO/PAS 21448:2019]
 Road vehicles. Safety of the intended functionality

[ISO/IEC/IEEE 12207:2017]
Systems and software engineering – Software life
cycle processes.

[ISO/IEC 15504-5:2012]
Information technology – Process assessment –
Part 5: An exemplar software life cycle process as-
sessment model

[Kurd, Kelly, and Austin (2006)]
Kurd, Z.; Kelly, T.; and Austin, J. 2006. Developing
artificial neural networks for safety critical systems.
Neural Comput. Appl. 16(1):11–19.

[Kurd (2005)]
Kurd, Z. 2005. Artificial neural networks in safety-
critical applications. Ph.D. Dissertation, Department
of Computer Science, University of York.

[Morgan et al.(1996)]
Morgan, B.; Bedford, D. F.; Morgan, G.; and Austin,
J. 1996. Requirements for a standard certifying the
use of artificial neural networks in safety critical
applications. In Proceedings of the International
Conference on Artificial Neural Networks.

[Pulina and Tacchella (2010)]
Pulina, L., and Tacchella, A. 2010. An abstraction-
refinement approach to verification of artificial neu-
ral networks. In Touili, T.; Cook, B.; and Jackson, P.,
eds., Computer Aided Verification, 243–257. Berlin,
Heidelberg: Springer Berlin Heidelberg.

[Putzer, H.J. (2004)]
Ein uniformer Architekturansatz für Kognitive
Systeme und seine Umsetzung in ein operatives
Framework, Verlag Dr. Köster; Auflage: 1., 17. No-
vember 2004, ISBN-10: 3895745448 ISBN-13: 978-
3895745447

[Rick Salay (2018)]
Rick Salay, Rodrigo Queiroz, K. C. 2018. An analysis
of ISO 26262: Using machine learning safely in
 automotive software. In WCX World Congress
Experience. SAE International.

[Rodvold (1999)]
Rodvold, D. M. 1999. A software development pro-
cess model for artificial neural networks in critical
applications. In IJCNN’99. International Joint
Conference on Neural Networks. Proceedings
(Cat. No.99CH36339), volume 5, 3317–3322 vol.5.

[VDE-AR-E 2842-61:2020]
Design and Trustworthiness of autonomous/cogni-
tive systems.

18

Published by
fortiss GmbH
Guerickestraße 25, 80805 München
E-Mail: info@fortiss.org
www.fortiss.org

Authors
Dr. Henrik J. Putzer
Dr. Ernest Wozniak

Layout
Sonja Taut

Print
viaprinto | CEWE Stiftung & Co. KGaA
Martin-Luther-King-Weg 30a
48155 Münster

ISSN Print ISSN Online
2699-1217 2700-2977

1st issue, Oktober 2020

Photo credits
Titel: shutterstock ©  BAIVECTOR
Seite 4: shutterstock ©  Blue Planet Studio
Seite 9: shutterstock © Phonlamai Photo
Seite 12: shutterstock © Sylverarts Vectors
Seite 16: shutterstock ©Alexander Limbach
Seite 18: fortissGmbH © Kathrin Kahle

Imprint

19

fortiss is the Free State of Bavaria research institute
for software-intensive systems based in Munich.
The institute collaborates on research, development
and transfer projects together with universities and
technology companies in Bavaria and other parts
of Germany, as well as across Europe. The research
activities focus on state-of-the-art methods, tech-
niques and tools used in Software & Systems-,
AI- and IoT-Engineering and their application with
cognitive cyber-physical systems.

fortiss is legally structured as a non-profit limited
liability company (GmbH). The shareholders are
the Free State of Bavaria (majority shareholder) and
the Fraunhofer-Gesellschaft zur Förderung der
angewandten Forschung e.V.

Although this white paper was prepared with the
utmost care and diligence, inaccuracies cannot be
excluded. No guarantee is provided, and no legal
responsibility or liability is assumed for any damages
resulting from erroneous information.

20

fortiss GmbH
Guerickestraße 25
80805 München
Deutschland
www.fortiss.org
Tel.: +49 89 3603522 0
E-Mail: info@fortiss.org

