
Whitepaper

How is this possible?

Safe AI

Whitepaper

Munich Center for
Trustworthy AI:

Safe AI — How is this possible?1

Authors:

Dr. Harald Rueß

fortiss GmbH

Guerickestr. 25

80805 Munich

ruess@fortiss.org

Prof. Dr. Simon Burton

Fraunhofer Institute for Cognitive Systems IKS

Hansastraße 32

80686 Munich

simon.burton@iks.fraunhofer.de

Munich, 4th February 2022

 » As we know,

there are known knowns.

 There are things we know

 we know.

 We also know

 there are known unknowns.

 That is to say,

 we know there are

 some things we do not know.

But there are also unknown unknowns,

 the ones we don’t know,

 we don’t know. «
Donald Rumsfeld, Feb 2002, US DoD news briefing

1 This work is funded by the Bavarian Ministry for Economic Affairs, Regional Development and Energy as part of the fortiss
AI Center and a project to support the thematic development of the Fraunhofer Institute for Cognitive Systems. We are also
grateful to Carmen Cârlan and Henrik Putzer for their thorough remarks and suggestions for improvement; in particular, Figure 2
is due to Carmen.

1. Introduction 4

2. Challenges 7

 Uncertainty and Complexity 7

 Safety Engineering 10

3. Specification 14

 System Safety Specification 14

 Component Safety Specifications 14

 Deriving Component Safety Specifications 15

 Component Safety Verification 16

4. Uncertainty Quantification 18

 Environmental Uncertainty 19

 Behavioral Uncertainty 19

 Uncertainty Propagation 20

 Assurance-based Uncertainty Estimation 20

5. Analysis 22

 Testing 22

 Symbolic Verification 24

 Runtime Verification 24

6. Safety-by-Design 26

 Property-driven Synthesis 26

 Compositional System Design 26

7. Conclusions 28

 References 30

Content

3

1. Introduction

A new generation of cyber-physical systems (CPSs)
with cognitive capabilities is being developed for re-
al-world control applications. Examples are self-driv-
ing vehicles, flexible production plants, automated
surgery robots, smart grids, and cognitive networks.
These systems are artificial intelligence (AI)-based
in that they leverage techniques from the field of
AI to flexibly cope with imprecision, inconsistency,
and incompleteness, to have an inherent ability to
learn from experience, and to adapt according to
changing and even unforeseen situations. This extra
flexibility of AI, however, makes its behavior more
difficult to predict, and the challenge is to construct
AI-based systems without incurring the frailties of
“AI-like” behavior [1].

In addition, cyber-physical AI systems usually are
safety-critical in that they may be causing real harm
in (and to) the real world. As a consequence, the
central safe AI objective is to handle or even over-
come the dichotomy between safety and the large-
ly unpredictable behavior of complex AI systems.

Consider, for example, an automated emergency
braking system for a car that continually senses the
operational context based on machine learning
(ML), assesses the current situation via an AI deci-
sion module based on models of the operational
context (and itself), and initiates a maneuver for
emergency braking by overriding the human driver,

when necessary. The intent of this emergency
maneuver is, of course, to prevent accidents in
time-critical situations that the human operator may
not be able to control anymore. The emergency
braking maneuver itself is also safety-related, as
wrongful execution might cause severe harm.

The safe AI challenge is not exactly new [2] and
may well be traced back to Turing himself in the
early 1950s. Still, it has recently become all-import-
ant because of the euphoric mood about AI, as
the acceptance and the success of AI techniques
for real-world applications hinge on a meaningful,
dependable, and safe control. Ongoing discussions
about the responsible deployment of AI in the real
world range from human-centered social norms
and values2 to its robust and safe realization [3] [4].

In this thought outline, however, we restrict our-
selves to the technical design and engineering prin-
ciples of safe AI systems as a necessary step for
the responsible deployment of mission- and safety-
critical AI systems into our very societal fabric.
Moreover, although we are concentrating only on
safety aspects in this thought outline, we believe
that the suggested approach also fruitfully intersects
with related dependability attributes of AI systems,
such as security, privacy, inverse privacy, fairness,
and transparency.

2 https://www.ai4europe.eu/ethics

4

Perception

• Multisensor
 Data Fusion
• Object Detection
• Object Classification
• Intent Recognition

Deliberation

• Desires & Goals
• Strategy
• Plan
• Trajectory

Execution

• Action Selection
• Priority
• Reflexes
• Precise Control

In OutContext
Model

Dependable Cognitive System (based on dependable AI)

Action
Plan

World / Environment

Figure 1 Sense-plan-act loop of a cognitive system.

3 For our purposes, we use the terms “AI system”, “cognitive AI system”, and “cognitive system” largely interchangeably.
4 Notice, however, that this suggested separation-of-means has exceptions, such as Nvidia’s end-to-end-control for an experimental
self-driving system [119].

The starting point of our considerations is cognitive
systems, which are software-intensive technical
systems that imitate cognitive capabilities, such as
perception, model-building, and reasoning. More
specifically, the basic sense-plan-act control loop
of the cognitive AI system3 in Figure 1 is based on
monitored observations of the operational environ-
ment (including the controlled plant), perception,
and interacting commands from human operators.
Functionally automated driving systems, such as
the emergency braking example, may easily be con-
sidered instances of this sense-plan-act loop,
where the ego car is the plant to be controlled.

The cognitive system in Figure 1 is conceptually
a function taking sensing inputs and generating
corresponding output actions, which is usually also
based on the internal state. Although this loop may
be used as the conceptual specification of a reac-
tive CPS [5], it is also the central technical concept
of the AI field, which is concerned principally with
designing the internals of stream-transforming con-
trols for mapping from a stream of raw perceptual
data to a stream of actions.

Behavior generation for the sense-plan-act loop is
decomposed into successive stages for situational
awareness, followed by deliberate, goal-oriented
planning and by execution of selected actions in
the real world. Sensing functionalities, in particular,
are currently often realized through data-driven
ML methods, such as artificial neural networks
(ANNs). Behavioral planning capabilities, on the
other hand, are usually realized by more traditional
software-based control methods but also through
probabilistic and reinforcement-based synthesis
of control strategies. This conceptual separation
into sensing and deliberate planning is supported,
among others, by the global workspace theory,
which categorizes cognitive capabilities into fast
and slow modes of operation: System 1 operates
rapidly, intuitively, and effortlessly, whereas System
2 requires concentration, motivation, and the appli-
cation of learned rules, and it allows us to grasp the
right ones.4 In other words, System 1 means snap
judgments that seduce us with the wrong answers,
and System 2 means thinking twice [6].

5

1. Introduction

The context model of our running example, au-
tomated emergency braking, might consist of the
positions, bounding boxes, and motion vectors of
surrounding environmental objects, such as cars or
cyclists.

The sensing stage constructs and updates faith-
ful models,5 based on perceived inputs and other
knowledge sources, of the exogenous operating
environment and the endogenous self. One can
easily imagine scenarios in which failure of detec-
tion, misclassification, or imprecision in models
causes an accident.

The main challenge, therefore, is to provide a con-
vincing argument that an AI system is sufficiently
safe as determined through applicable risk and
safety analysis. As usual, this notion of sufficiently
safe heavily depends on the specific societal con-
text and, correspondingly, acceptable risks.

For our purposes, automated emergency braking
(EB) is intuitively said to be safe if its activation pre-
vents, at least up to some tolerable quantity, acci-
dents in prescribed situations. Assuming we can
identify a corresponding subset S of “known” safe
states of the operating context, the safety envelope,
then the safety challenge for EB reduces to verifying
the safety invariant EB(S) ⊆ S. In this way, EB, when
initiated in a potentially unsafe and uncontrollable
(for the driver) state in S, produces safe control
actions, in that the ego car is always maneuvered
toward a safe and controllable state, possibly a fail-

safe state, and as the basis for a possible handover
to the driver. As with most CPSs, ensuring safe
control involves a rather complex interaction of un-
certain sensing, discrete/probabilistic computation,
physical motion, and real-time combination with
other systems (including humans). We are arguing
that traditional safety engineering techniques for
embedded systems and CPSs are, for the multitude
of heterogeneous sources of uncertainty, not appli-
cable to learning-enabled cognitive systems, which
are acting increasingly autonomous in open envi-
ronments.

We identify central specification, uncertainty, as-
surance, design, analysis, and maintenance chal-
lenges for realizing this rigorous design of safe AI,
all based on the notion of managing uncertainty to
acceptable levels.6 An overview of these challenges
is provided in Table 1 (p. 29) — without any claim of
completeness.

In addition, notice that because safe AI engineering
is in its infancy, at times this exposition may seem to
be rather sketchy and speculative, and clearly, many
of our claims and hypotheses need further sub-
stantiation or disproval. In this sense, this thought
outline should be provocative and thought-inspiring.
It is also intended to be a living document, which
needs to be updated and concretized as we gain
more experience and increase our theoretical un-
derstanding of the rigorous design for safe AI — as
the basis for the responsible and safe deployment of
AI in our economic and societal fabric.

5 So-called digital twins. 6 In analogy to the “as low as reasonably possible” (ALARP) risk-based criterion, we might call this the “as
certain/confident as reasonably possibly” (ACARP) principle.

6

2. Challenges

Uncertainty and Complexity

The cognitive capabilities of CPSs are enabled
by advances in AI, in particular, ML, as well as the
large-scale availability of training and validation data
through an increasing number of sensing channels
and connectivity. As motivated above, the deploy-
ment of such systems is leading to substantial chal-
lenges in safety assurance, including existential ques-
tions, such as can AI systems ever be considered safe
enough? We now look at some of the legitimate rea-
sons for these doubts before focusing on AI-specific
topics in later sections.

Previously, safety-critical electric/electronic (E/E)
systems were assured by considering the impact of
malfunctions caused predominantly by random hard-
ware failures or system design faults, including but
not exclusive to software bugs. This scrutiny allowed
for a model-based approach to understanding the
failure modes of individual components and how
faults in individual components propagate through a
system, leading to hazardous actions. However, in-
troducing safety-critical cognitive systems requires a
broader consideration of safety and potential causes
of hazards. Many of these challenges can be related
to the increasing complexity and uncertainty within a
system and its environment.

Uncertainty

A particular challenge is that an AI system contains
a multitude of sources of entangled uncertainty.
The inductive capability of ML for extracting models
from data is inseparably connected with uncertainty,
but there is also uncertainty regarding the operating
context, there is uncertainty regarding the models of
the operating context and the “self,” there is behav-
ioral uncertainty due to the approximate nature of
heuristic learning algorithms, there is uncertainty due
to probabilistic and non-deterministic components,
there is uncertainty regarding safety hazards,7 there is
uncertainty regarding safety envelopes in uncertain
operating contexts, there is uncertainty in a mean-
ingful fallback to a responsible human operator and,

finally, there is uncertainty in self-learning systems
concerning their emergent behavior in time. Possibly
the only thing that is certain about an AI system is
that it is uncertain and largely unpredictable.

As an example, let’s investigate the sources of un-
certainty of ML components, such as ANNs, in more
detail. The input-output behavior of ANNs heavily
relies on selecting “complete” and “correct” (with
respect to the ground truth) sets of training and sup-
port data to faithfully specify relevant operating con-
texts (input) and their intended internal representation
(output). Another source of uncertainty for these ML
algorithms is the use of stochastic search heuristics,
which may lead to incorrect recall even for inputs
from the training data, and the largely unpredictable
capability of generalizing from the given data points.
Uncertainty regarding the faithfulness of the training
data representing operating contexts and uncertainty
regarding the correctness and generalizability of
training also combine in a, well, uncertain manner.
The consequences of these accumulated uncertain-
ties are profound. Particularly, ANNs are usually not
robust with unseen inputs, as there is also quite some
uncertainty in their behavior for even small input
changes.8

Adequate approaches are needed to measure the
(un)certainty in the input-output behavior of an ANN
with respect to the real world. For example, how
certain are we that a given ANN correctly classifies
certain classes of homeomorphic images of a “cat”?
How certain should an ego vehicle be that there will
be no surprises, such as undetected or misclassified
vehicles, before initiating an emergency brake? Based
on these certainty measures, internal models of the
operating context should be equipped with confi-
dence levels or, more generally, confidence intervals
or distributions. The EB assistant, for example, may,
as the basis for selecting appropriate action, assign
confidence levels for the position and mobility vec-
tors of all relevant objects, possibly together with a
level of confidence that objects have been correctly
identified and classified and that no “ghost” objects
are in the context model.

7 For instance, dynamic hazards, such as the sudden occurrence of objects on a road, which may lead to catastrophic failure.
8 For instance, “one-pixel attacks” for fooling deep neural networks [22].

7

2. Challenges

Holistic Domain and
Requirements Analysis

Complexity
considerations:

Assurance
Argument

Resilient System Architestures
and Functionality

Continuous Verification
and Validation

that a tolerable

residual level of

risk has been

achieved and is

maintained

Regulatory

factors, System

operation and

management,

Human-Machine

interaction,

Technical

uncertaainty

Figure 2 Complexity-aware systems safety engineering.

Complexity

We refer to complexity in terms of systems theory,
where a system is defined as complex if the inter-
action between its parts leads to behavior that could
not be predicted by considering the individual parts
and their interactions alone. Complexity can mani-
fest itself within different levels of a system:

 Increasing complexity within the E/E architecture.
This complexity is caused by not only the in-
creasing number of technical components within
a system but also the heterogeneity and tech-
nical implementation of these components, the
use of components and software of unknown
pedigree, and changes in the system after release
due to software updates or the integration of
additional services (e.g., via cloud connectivity).
One impact of system complexity is nonlinearity,
mode transitions, and tipping points where the
system may respond in unpredictable ways
depending on its current state or context.

 Complex behavioral interactions between
systems, self-organization, and ad hoc systems-
of-systems. Interactions between a system and
its environment may be difficult to predict, par-
ticularly when human agents are involved in the
interactions. Consider the range of behaviors
that must be considered by a self-driving vehicle
navigating heavy traffic consisting of human-
driven vehicles and automated vehicles from
other manufacturers acting according to unhar-
monized norms of behavior. Such interactions
may lead to ad hoc systems-of-systems forming,

over which individual manufacturers have little or
no control and thus call into question whether
the system scope under consideration for safety
is appropriate and what an appropriate scope of
analysis should be.

Increasing complexity increases the difficulty of deter-
mining the (potential) causes of failures in the system
and effective risk control measures. The impact of
complexity in the systems and their environment on
our ability to deliver convincing arguments for safety
has been discussed in more detail within the scope of
automated driving [7]. The concept of uncertainty is
closely related to the topic of increasing complexity.
Again, uncertainty can manifest itself in several ways
that make the safety assurance of safety-critical cogni-
tive systems more challenging.

1 Scope and unpredictability of the operational
domain. Many highly automated CPSs can be
said to operate within an open context, that is, an
environment that cannot be fully specified in a
way that desirable system behavior can be defined
for each possible set of conditions. Such environ-
ments are typified by the presence of edge cases
or “black swans,” corresponding to previously un-
known or even unknowable conditions. Further-
more, the operational domain can shift over time,
leading to new sets of conditions that were ne-
glected during design. This neglect inevitably leads
to insufficiencies in the resulting specification of the
system under development, which are referred to
as “ontological” uncertainties [8].

8

2 Inaccuracies and noise in sensors and signal
processing. This complex, unpredictable envi-
ronment is measured using a combination of
inevitably imperfect sensors providing a noisy,
incomplete view of the environment. In addition
to general inaccuracies in the measurements,
such sensors themselves can be “fooled” by
physical properties of the environment, such as
a lens flare distorting a video image or manhole
covers leading to spurious radar reflections.

3 Uncertainties in the perception and decision-
making functions. The complex, incomplete,
and noisy inputs to the system are often the
motivation for using AI and ML techniques in the
first place. However, as we will explain in further
chapters, these algorithms themselves intro-
duce additional uncertainty within the system
and rarely deliver precise results. Therefore, in
an attempt to solve the problem of uncertainties
in the inputs to the system, yet another class of
uncertainties is introduced.

The complexity of the system and associated uncer-
tainties lead to semantic gaps [9], which are defined
as a discrepancy between the intended and specified
functionality and can be caused by the complexity
and unpredictability of the operational domain, the
complexity and unpredictability of the system itself,
as well as the increasing transfer of decision func-
tions to the system, which would otherwise require
non-specifiable properties, such as human intuition
or ethical judgment. These semantic gaps lead to
insufficiencies in the definition of appropriate safety
acceptance criteria as well as a lack of confidence
that statements made in a safety assurance case
reflect the actually achieved safety of the system.

The above discourse illustrates the manifold chal-
lenges we face when developing safe cognitive sys-
tems. It also allows us to better delimit discussions
around “safe AI.” To derive an adequate set of safety
assurance methods for such systems, we must be
clear about which problems we are addressing.
These problems can be roughly separated into the
following categories:

1 Safety challenges caused by the inherent
difficulty of the task to be solved. This category
includes the systematic complexity of the func-
tion to be implemented using AI components
based on the complexity and unpredictability of
the input domain and the resulting impact on

semantic gaps, which may restrict our ability to
define an adequate specification of the required
performance of the AI-based function. These
factors are independent of the actual AI or ML
techniques used and are better referred to as
cognitive system safety engineering activities.
These activities include the application of suitable
system safety assurance methods, including the
definition of socially and legally tolerable risk
acceptance criteria, as the development of an
overall system design that is resilient to previously
unknown or changing properties of the environ-
ment. A “complexity-aware” system safety engi-
neering approach is summarized in Figure 2.

2 Safety challenges caused by the use of specific
AI/ML techniques. This category includes perfor-
mance limitations and properties of the specific
AI/ML techniques used. For example, statistical
modeling and linear regression-based models
exhibit different sets of properties related to the
explainability and predictability of their results
as deep neural networks but may differ greatly
regarding their accuracy for certain tasks. An
example of how the properties of a specific ML
technique can support a safety assurance case
can be found in [10]. The AI-technology specific
challenges therefore involve ensuring that the
specific performance requirements allocated to
the AI-based function within the system context
are fulfilled with a level of confidence commen-
surate to the overall level of system risk.

When discussing “safe AI” and the associated chal-
lenges, we should therefore be clear about which
scope we are referring to. Are we referring to the
safety of cognitive systems operating within an
open context or to whether specific properties of
a trained model remain within certain bounds of
uncertainty for a given set of inputs? These two
topics are closely interrelated. For example, when
applying ML techniques that deliver a high level of
prediction uncertainty or sensitivity to small changes
in the inputs, such as deep neural networks, the
cognitive systems engineering task must ensure
that tolerances on uncertainties within the trained
model must be carefully defined and aligned with
other system components.

9

2. Challenges

Safety Engineering

Traditional safety engineering ultimately is based on
fallback mechanisms to a responsible human oper-
ator, the deterministic behavior of a cyber-physical
system as the basis for its testability, and well-defined
operating contexts. In addition, current safety certifi-
cation regimes require correct and complete specifi-
cations before operation. These basic assumptions
of safety engineering no longer pertain to AI systems
for the following reasons:

1 With increased autonomy, a fallback mechanism
to a human is often not possible anymore. In-
deed, the EB system needs to perform without
any human intervention, as the required reaction
times are well below the capabilities of human
beings.

2 AI systems make their own knowledge-based
judgments and decisions. While added flexibility,
resilience, elasticity, and robustness of cognitive
AI systems are clearly important, the gains in
these dimensions come at the loss of testability
due to the admittance of nondeterminism.9 This
disadvantage is costly because systematic test-
ing and simulation are still the single most used
technique for verifying the correct functioning of
software-intensive systems.

3 AI systems need to cope with operating environ-
ments in which comprehensive monitoring and
controlling is impossible and in which unpredict-
able events may occur. In fact, AI systems are
mainly used for situations where the full details
of the operating context cannot be known in
advance. Risk estimation is therefore difficult to
perform for AI systems using conventional tech-
niques.

For all these reasons, well-established and success-
ful safety standards for software-intensive systems,
including DO 178C in the aerospace industry and
ISO 26262 in the automotive industry, cannot read-
ily be applied to AI systems. Indeed, these safety
standards barely heed autonomy and the particu-
larly advanced software technologies for system
autonomy [11].

Many industrial initiatives for development are in
progress, such as lower levels of automated driv-
ing10 and certified AI algorithms in the medical
domain.11 These endeavors, however, are incom-

plete in that they are based on prescriptive safety
standards.12 However, we still need to determine
adequate methodologies and end-to-end verifica-
tion technology to assure safe autonomy. In addi-
tion, we need to gain more practical experience
with these approaches before prescribing them as
“good” or even “best” practices in industrial stan-
dards. Current safety engineering standards are also
based on the idea that the correct behavior must be
completely specified and verified before operation.
It is therefore unclear if and how these safety stan-
dards may apply to learning-enabled systems, which
are continuously self-adapting and optimizing their
behavior to ever-changing contextual conditions
and demands, based on their experience in the field.

If the current safety engineering methodology is not
directly applicable to AI systems, then we might ask
ourselves if we can at least reduce the problems
of safe and learning-enabled control on a case-by-
case basis, including the following examples:

 Depending on the application context, safety
engineers can restrict AI-based functionality with
the intent of increasing controllability or de-
creasing severity/exposure, thereby decreasing
associated safety risks.

 Uncertainty due to open-ended operating con-
texts and the safe control thereof is dramatically
reduced in current automotive practice by col-
lecting all types of possible driving scenarios
using real and virtualized global ecosystems of
vehicles.13 This approach basically tries to close
off the set of possible driving scenarios as the
basis for constructing the equivalent of a “digital
rail.” Because of the many possible anomalies
(“black swans”),14 however, this approach is rath-
er resource-intensive, and it is unclear how to
determine that enough scenarios have been
collected to sufficiently cover the space of all
driving scenarios.

 AI-based functionality is complemented by a
safe control channel, thereby effectively com-
bining the intended performance of AI-based
systems with the safety of more traditional
control.15 The crucial element in this safety ar-
chitecture is a switch between the performant
AI-based channel and the safe channel, which
is based on runtime monitoring of crucial safety
specifications. A pervasive runtime monitor, for
example, checks that the proposed action of the

10

9 A NASA study of a software-based control of vehicle acceleration, for example, revealed, among other things, potential race condi-
tions in sensor readings due to asynchronous access by a multiplicity of threads. This study concluded that the software was “untest-
able”, preventing the possibility of eliminating unsafe control actions [124]. 10 Safety first guidance for potential methods and consid-
erations with the intention of developing safe L3-L4 automated driving functionality, including an ANN [105]. 11 https://www.fda.gov/
medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices#resources
12 “If you do … then the system is safe.” 13 For example, https://www.pegasusprojekt.de/en/home. 14 A well-known example is
the fatal crash of a car in autonomous mode that resulted from a very rare four-factor combination of a white truck against a bright-
ly lit sky, along with the truck height and angle versus the car (https://www.tesla.com/blog/tragicloss), (https://www.ntsb.gov/news/
press-releases/Pages/PR20170912.aspx). 15 This combination is sometimes called a “Simplex” architecture. 16 The applicability
and limits of prescriptive safety standards to autonomous AI systems are also discussed in [126]. 17 See also the Subsection entitled
Assurance-based Uncertainty Estimat. 18 See, for example, [129] for a survey of the safety certification of systems with learning-
enabled components.

EB yields safe behavior. This pervasive run-
time monitor, together with the switching logic
between the two channels, is developed with
traditional safety engineering methods, thereby
effectively removing the AI component from a
safety-critical path.

 An engineer may also decide to discontinue
initial AI-based proof-of-concepts by reverting to
well-understood control techniques altogether,
for example, if an end-to-end safety concept
for a given AI-based functionality is too costly
or not possible and if a sufficiently performant
and safe system may be achieved by more tra-
ditional means. The underlying phenomenon of
technical debt for data-driven systems in real-life
engineering has already been described [12].

Based on these types of engineering design deci-
sions for reducing the safety relevance and increas-
ing the determinacy of AI systems using traditional
prescriptive safety engineering techniques for AI
may sometimes also be possible. However, this
reductionist approach is restricted to a rather small
class of functionally automated systems with added
machine learning-based capabilities, which do not
adequately support the key concepts of AI systems,
namely, autonomy and self-learning. Methods for
reducing safe AI problems to the currently prevailing
prescriptive safety engineering standards therefore
are not future proof,16 because prescribed and fixed
verification and validation process activities, criteria,
and metrics do not work well for assuring the safety
of AI systems [13].

Overarching properties [14] have recently been pro-
posed as a product-based alternative to prescriptive
safety engineering standards such as DO 178C.

Informally, a system is safe for operation if and only
if the CIA conditions hold:

• the system does what it should do under fore-
seeable operating conditions (Correctness);

• what the system should do is properly captured
(Intent); and

• the system does not cause unacceptable harm
(Acceptability).

An assessment of whether a system possesses
these properties might be based on an explicit as-
surance case.17 Overarching properties are therefore
flexible enough to be adapted to developing a jus-
tified belief of system safety with learning-enabled
components. Currently, however, the overarching
CIA properties do not seem to have been adopted
for safety certification on a larger scale.

Taken together, traditional safety engineering is
reaching a turning point, moving from determinis-
tic, non-evolving systems operating in well-defined
contexts to self-adaptive and self-learning systems
that are acting increasingly autonomous and in
largely unpredictable operating contexts. However,
we currently do not have an adequate safety en-
gineering framework for designing this upcoming
generation of safety-related AI systems.18

In the following section, we therefore outline a nov-
el approach to safe AI engineering. This approach
is based on uncertainty quantification for the multi-
tude of sources of uncertainties in AI systems.

The overarching goal of managing uncertainties
is to minimize uncertainty in the system behavior,
thereby increasing confidence up to tolerable levels
in the safe behavior of the AI system.

11

The underlying idea is to generalize the notion of
determinacy in traditional safety engineering to un-
certainty. As a special case, if some system behaves
with no uncertainty, then it is fully predictable and
deterministic. Deterministic parts of an AI system
can (and probably should) therefore still be de-
veloped with well-proven design and verification
techniques for establishing correctness and possible
perfection.

Instead of fallback to responsible (human) opera-
tors, uncertainty measures are used by autonomous
control strategies to minimize surprises and safely
explore largely unknown territory. The EB assis-
tant, for example, might be rather uncertain about
the precise location of some relevant car, and it
therefore initiates additional perceptive capabilities
with the intent of decreasing uncertainty, thereby
increasing its confidence, in the location of the re-
spective car to a sufficient level, as the basis for de-
ciding on a safe sequence of EB actions. Moreover,
some indirect cues [15] cause the system to hypoth-
esize the presence of a relevant car, which needs to
be confirmed by additional actions before initiating
emergency breaking. These examples demonstrate
that uncertainty is not only a design but also an es-
sential runtime artifact for the situational generation
of safe control behavior.

Uncertainties in the proposed engineering frame-
work are explicitly managed through safety cases.
These structured arguments are supported by a

2. Challenges

body of evidence that provides a compelling, com-
prehensible, and valid case that a system is safe for
a given application and operating environment.19
In contrast to largely process-based traditional pre-
scriptive approaches, a safety argument based on
safety cases is largely product-based, as it involves
presenting evidence that the actually developed
system is safe, as opposed to merely showing that it
was developed using normatively prescribed “good”
practice. Recent quantitative extensions to safety
and assurance cases provide the basis for assigning
and combining uncertainties for the central ingre-
dients, such as evidence, arguments, assumptions,
and conclusions.

Figure 3, for example, illustrates the top-level plan
for constructing a safety case for an autonomous
GNC,20 which is built upon a traditional 3-level
autonomous architecture. The modular construc-
tion of this safety case is based, among others, on
evidence from traditional verification of planning
components, verification of the correctness or quasi-
predictability of neural network components for
perceptive tasks, and runtime monitoring for central
safety properties. This GNC also includes an FDIR21
component for detecting and recovering from
unforeseen and potentially hazardous events. The
overall goal is to develop an autonomous space-
craft, say, for landing on an asteroid, together with
a complete safety case. In addition, the safety case
is also used to generate safe landing behavior and
safely handle unforeseeable events.

12

19 Def Stan 00-56 Issue 3, Safety Management Requirements for Defense Systems, Ministry of Defense, 2007. 20 Guidance, Naviga-
tion, and Control. 21 Failure Detection, Isolation, and Recovery

Figure 3 Safety case from a 3-layer architecture of a cognitive system.

Design-time evidence Runtime evidence

Safety Goal

Planning components are
correctly implemented

Safety Goal

NN-based perception components
are correctly implemented

Safety Goal

Safety goals are enforced
at runtime

Deliberative

(e.g., planning,
decision making, reasoning

prediction

Executive

FDIR

Reactive

(sensing/perception, fusion
actuation/controlling)

Safety Goal

Autonomous GNC operates safely

Argumentation Strategy

Argument over the correct
implementation of a 3-level
autonomous architecture

V & V Results Verification
Results

Context

Identified safety
properties for
DNN compo-

nents

Runtime
Monitoring

13

3. Specification

In the first step, we need to express in precise terms
when an AI system may be considered safe. This
step sounds deceptively easy because data-driven
AI is particularly successful in application contexts in
which obtaining concise specifications (say, transla-
tion of natural language) is difficult, if not impossible.

In addition, the operating contexts of AI systems
typically are complex, uncertain, and largely un-
predictable. Safety hazards are subject to change
during operation, and the presence of human
operators and their interaction with the sense-plan-
act control loop further complicates matters in that
even well-intended human interaction may lead to
unsafe behavior. In summary, the adaptive, flexible,
and context-sensitive behavior of AI systems caus-
es unpredictability and emergent unsafe behavior,
which was not necessarily specified, intended, or
consciously implemented during system design.

In the following section, we distinguish between the
safety specifications of AI systems and the derived
specifications of the learning-enabled components
of these systems. In addition, we discuss ways to sys-
tematically derive requirements for individual compo-
nents of a system from overall safety requirements.

System Safety Specification

The overall system’s safety specification is often
described in terms of safety envelopes. These en-
velopes may be considered an underapproximation
of the states (or scenarios) of possible operating
contexts that are sufficiently safe.22 In a slightly more
general setting, we also quantify the uncertainty of
environment states.

A common approach for specifying safety enve-
lopes is based on maximizing under approximations,
thereby also maximizing the number of known safe
behaviors. In other words, the operating context is
partitioned into the known safe (the safety enve-
lope), the known unsafe, the unknown safe, and
the unknown unsafe, and the goal is to maximize
the known safe areas by minimizing the known
unsafe areas and discovering as many new unsafe
scenarios as possible for a given level of effort [16].23
In addition, safety envelopes must be continually
adapted to ever-changing operating contexts, safety
hazards, and safety requirements.

The safety objective of an automated EB system, for
example, is to maintain a minimum safe distance

between the ego car and environmental objects.
More generally, the responsibility-sensitive safety
(RSS) model offers provable safety for vehicle be-
haviors, such as the minimum safe following dis-
tance [17].

Safety envelopes such as RSS have also been ex-
tended to address worst-case variability and un-
certainty [18]. Safety envelopes usually are highly
nonlinear and context dependent, as is the case of
Kamm’s friction ellipses.

In these cases, ML techniques based on minor
component analysis are promising for synthesizing
safety envelopes from safe behaviors [19]. These
techniques open the possibility of self-learning and
safe maintenance of safety envelopes through cau-
tious24 and safe exploration.

We still have very little knowledge on how to sys-
tematically construct safety envelopes. So the chal-
lenge is to construct and maintain safety envelopes
that are known safe states of the operational con-
text and to maximize the safety envelope for a given
level of effort. The safety of certain states contains
uncertainty.

Operational contexts, system behavior, and the
notion of acceptable risk are constantly evolving.
Therefore, safety envelopes must be continuously
adapted to these ever-changing conditions and re-
quirements. Depending on the degree of autonomy,
such AI systems need to self-maintain correspond-
ing safety envelopes, possibly including online risk
analysis.

Component Safety Specifications

The behavior of ML components is specified using
data. In the supervised learning of ANNs, for example,
a set of interpolation points is used to specify the in-
put-output behavior of the intended function. Inputs
may be observations of the operational context, and
outputs are corresponding context models.

The central challenge for data-driven requirements
engineering is to represent the operational context
using selected interpolation points as faithfully as
possible for a given level of effort. This task can be
accomplished by sampling input scenarios from the
(assumed) distribution of the operational context or
by discretizing the operational context according
to n features into 2ⁿ cells and sampling inputs from

14

22 According to a risk and safety analysis of the system under consideration. 23 A newer version is available at https://www.beuth.de/
de/norm-entwurf/iso-dis-21448/335355102. 24 Cautious behavior might be realized using minimizing surprises, which may be realized
by minimizing free energy or maximizing predictive information. 25 Notice that the precondition x ∈ S is in the language of environment
inputs, whereas the postcondition is in the language of the context models.

these cells. Both approaches are prohibitively ex-
pensive for many interesting operational contexts.
A series of polynomial-time approximations, for ex-
ample, has been developed to make feature-based
discretization feasible in practical applications [20],
and clustering and unsupervised learning tech-
niques are used to identify a finite number of rep-
resentative classes of scenarios [21]. Also of interest
would be constructing sets of interpolation points
that, when used to train a perception ANN, are suffi-
cient for establishing the invariance of the AI system
with respect to a given safety envelope.

Given a set of hopefully representative interpolation
points and an initial neural network architecture,
an ANN is constructed by heuristically searching,
usually based on hill-climbing, for a configuration
to minimize the error between actual and specified
outputs. This type of heuristic search might get
stuck in local minima, thereby leading to subopti-
mal solutions, or it might not terminate. Moreover,
the resulting ANN might be incorrect in that its
input-output behavior does not coincide with the
specifying interpolation points, and the ANN might
not be resilient in that slight variations of inputs lead
to completely different output behavior, because
many ANNs tend to “overfit” without further pre-
cautions in training. Consequently, ANN output can
often be altered by adding relatively small perturba-
tions to the input vector [22].

These types of uncertainties motivate the need
for requirements of ANNs beyond data, such as
resilience. For a fixed input x and a metric d on the
input space, an ANN is locally ε-resilient if ANN(x‘) is
equal to or similar to the output ANN(x) for all small
perturbations x‘ with d(x, x‘) < ε; if the ANN is locally
ε-resilient for all possible inputs, then it is also glob-
ally ε-resilient [23] [24]. The inherent uncertainty of
ANN input-output behavior is considerably reduced
by establishing strong resilience properties.

The additional desired behavior of perception
components usually comes with their intended
functionnality. For example, an object classifier may
be expected to correctly classify certain affine or

homeomorphic images of training inputs, such as
stretching, squeezing, rotational, and translational
images. Sequences of context models for modeling
traffic flow, for example, should also obey the fun-
damental laws of physics.

The challenge is to identify and maintain desired
properties and potential defects of ANN-based
perception components, which lead to undesired
behavior. Moreover, a much better understanding
of the contribution of these properties and defects
in the overall system safety is needed. This type of
knowledge should enable the development engi-
neer, for example, to compute precise bounds on
the required resilience of the perception ANN for
arguing overall system safety.

Deriving Component Safety Specifications

Given a safety specification S of the AI system de-
picted in Figure 1, we derive the corresponding
safety constraints on the possible behavior of the
ANN-based perception component. The control,
consisting of the deliberation and the execution
units, needs to ensure that the output (the changed
environment) is safe, that is, in S. In an engineered
system, we can compute the weakest precondi-
tion, say, wp(controler)(S), which now serves as the
postcondition for the perception unit. Assuming
that the input x to the perception unit is in S, that is,
that this state is safe, we obtain a pre/postcondition
specification

(x ∈ S) perception (x) ∈ wp(controler)(S)

of the perception unit that is sufficient to establish
the safety of the overall AI system loop.25 Adequate
domain abstractions and corresponding abstract
interpretation techniques are needed to make this
approach feasible.

Indeed, researchers have taken the first step in this
direction and identified special cases of pre/post-
condition pairs for neural networks [25] [26]. Logical
specifications θ may also be incorporated into the
training purpose of an ANN by constructing, for

15

example, a corresponding differentiable loss func-
tion L(θ), such that x (logically) satisfies θ whenever
L(θ)(x) = 0 or by incorporating constraints such that
θ will be satisfied by the model even on unseen data
[27]. More generally, in the case of mutual depend-
encies between the perception unit and the con-
troller for realizing active perception or in the case
of learning-enabled controllers, sufficiently strong
preconditions for these two components can be
synthesized based on, for example, a combination
of traditional assume-guarantee reasoning and ML
[28] [29]. Instead of using sets of states as properties
and state transformers between these properties,
one can also build uncertainty directly into the
computational model of an AI system. In these cas-
es, the behavior of AI systems may, at least partially
and when necessary, be based on probabilistic sets,
where states belong to a set with a certain proba-
bility only, and probabilistic transformers between
probabilistic sets. The classical notions of weakest
precondition and strongest postcondition general-
ize to probabilistic set transformers.

Whenever a few interactions occur between the
perception and the control unit, as is expected in
many real-time systems, the weakest precondition
approach above is applied to the unrolled system.
These types of pre/postcondition specifications for
the perception unit are the basis for largely decou-
pling perception development from the control
unit. For example, as long as the controller adapts
in time such that wp(controller′)(S) ⊆ wp(controller)
(S), where controller’ is the updated controller,
component-wise safety analyses will still compose
to a system-level safety argument; otherwise, the
challenge is to identify corresponding minimal sets
of changes for the perception unit and its analysis.
The perception specification can also be used as
additional input to train the perception an ANN or as
the basis for verifying this component, for example,
for systematically deriving test cases. These initial
ideas for systematically deriving component safety,
particularly for learning-enabled components from
overall systems safety requirements, clearly need to
be further developed and stress-tested on challeng-
ing real-world AI systems.

Component Safety Verification

Furthermore, one may compute the weakest pre-
condition of the perception ANN. For example,
computing the weakest preconditions of ReLu net-
works with their rather simple node activation func-
tions is, in principle, straightforward [30]. Now, given
a safety envelope S, the safety verification problem for
an AI system (perception; control) may be stated as

wp(perception)(wp(controller)(S)) ⊆ S

This fundamental safety invariant immediately reduces
to the local constraint for the perception unit:

perception(S) ⊆ wp(controller)(S)

These types of constraints are statically analyzed
based on symbolic verification techniques [31] used
for test case generation or dynamically checked
using runtime verification (see Section 5).

In addition, the perception component may now be
trained with the additional knowledge that its precondi-
tion is S and the postcondition is wp(controller)(S).
Logical constraints can also be interpreted in a more
general quantitative logic to obtain a differentiable
objective function as needed for hill-climbing-based
training. Such quantitative interpretation may, for
instance, be based on probabilistic sets and probabil-
istic transformers for modeling.

If we manage to train a “correct” ANN, then we ob-
tain a safety-by-design method for constructing safe
AI systems. Indeed, as mentioned above, an ANN
may be trained to obey some given logical safety
property by constructing a corresponding differenti-
able loss function for the satisfiability of this formula.
Nonetheless, the safe behavior and input-output
still contain uncertainty due to the incorrectness of
underlying learning algorithms. A new generation of
knowledge-enhanced ML [32] techniques is tackling
such real-world challenges for ML algorithms.

3. Specification

16

17

Learning in the sense of replacing specific observa-
tions with general models is an inductive process.
Such models are never provably correct but only
hypothetical and therefore uncertain, and the same
holds for the predictions produced by a model.

In addition to the uncertainty inherent in inductive in-
ference, other sources of uncertainty exist, including
incorrect model assumptions and noisy or imprecise
data. Correspondingly, one usually distinguishes be-
tween aleatoric and epistemic sources of uncertainty
[33] [34]. Whereas aleatoric26 uncertainty refers to the
variability in the outcome of an experiment that is
due to inherently random effects, epistemic27 uncer-
tainty refers to uncertainty caused by a lack of knowl-
edge. In other words, epistemic uncertainty refers to
the ignorance of an actor, and hence to its epistemic
state, and can in principle therefore be reduced with
additional information. Various approaches toward
robustness are taken based on reducing uncertainty
[33]. Uncertainty reduction also plays a key role in
active learning [35] and learning algorithms such as
decision tree induction [36].

Indeed, sources of uncertainty in the design of safe
AI systems are multitudinous [37]. There is, among
other things, uncertainty about the operational con-
text, about hazards and risks, about the correctness
and generalizability of learning-enabled components,
about safety envelopes, there is uncertainty due to
noise in sensing, controller uncertainty due to non-
determinism and/or probabilistic control algorithms,
uncertainty on the internal models of the controller,
and, last but not least, uncertainty about the actions
of human operators and their possible interaction
with the AI-based control system.

Rigorous approaches for safe AI need to manage
the multitude and heterogeneity of sources of
uncertainty. We therefore propose an engineering
approach based on the principle of uncertainty
reduction, thereby increasing the predictability (up
to tolerable quantities) of the AI system. The crucial
steps are as follows:

 Identify all28 relevant sources of uncertainty.

 Quantify and estimate the uncertainty,29 including
the certainty thereof.

 Forward and inverse propagation of uncertainty
along chains30 of computation.

 Modular composition of uncertainties along the
architectural decomposition31 of the AI system.

 Design operators to mitigate the overall system
uncertainty below a certain level as determined
by a risk and safety analysis,32 including

 • a combination of offline and online accumula-
tion of relevant knowledge for managing epis-
temic sources of uncertainty, and

 • incremental change in uncertainty reasoning
due to self-learning or even self-modification
capabilities of an AI system.

Clearly, these tasks for managing the multitude of
heterogeneous sources of the uncertainty in AI sys-
tems are fundamental in any rigorous and transpar-
ent engineering process. We currently do not have,
however, a comprehensive set of methods and
tools for supporting application engineers in man-
aging uncertainties.

4. Uncertainty Quantification

26 AKA statistical, experimental, or “known unknown”. 27 AKA systematic, structural, or “unknown unknown”. 28 In a defeasible
manner. 29 Uncertainty quantification is the science of quantitative characterization and reduction of uncertainties in computational
and real-world applications. Among others, it tries to determine how likely certain outcomes are if some aspects of a system are not
exactly known. 30 Including recursive chains. 31 Both horizontal and vertical. 32 For example, less than one hazardous behavior for
109 operational time. 33 Operational design domains may be specified following standards such as PAS 1883 (https://www.bsigroup.
com/en-GB/CAV/pas-1883). 34 Again, the old saying applies: All models are wrong, but some might be useful.

18

Environmental Uncertainty

The operational environment of AI systems can be
rather complex,33 with considerable uncertainty even
about the number and type of objects and agents,
human and robotic, that are in the environment, let
alone about their intentions, behaviors, and strategies
[38]. An AI system therefore must act without relying
on a correct and complete model of the operating
environment. The models at hand usually do not
faithfully reflect the real-world operational context,34
and it is simply not possible, and possibly not even
desirable, to model everything. To address modeling
errors, AI systems may make distributional assump-
tions about the operational environment. However,
exactly ascertaining the underlying distribution can
be difficult.

As an alternative to explicitly modeling the opera-
tional environment, this environment is commonly
specified using a set of scenarios, which should be
sampled with respect to the underlying distribution
of the environment. These scenarios are analyzed
and labeled with their respective interpretation of the
context model to obtain training data for an ANN-
based perception unit. Selecting “good” scenarios is
a major challenge. These scenarios should signifi-
cantly reduce the difference between the assumed,
underlying distribution of the operating environment
and the distribution of the selected training set. For
example, collecting scenarios by driving around for
five hours on a highway in Alaska does not contrib-
ute as well to the approximation of real-world driving
as collecting driving scenarios at the Gate of India.
Another concern is evolving operating scenarios and
how to correspondingly adapt the set of specifying
scenarios.

The challenge is to quantify and measure uncer-
tainty between the operating environment and its
specifying set of scenarios, identify “good” scenarios
for reducing uncertainty to tolerable levels, provide
sufficient conditions on the uncertainty of scenario
sets for overall system safety (up to quantifiable tol-
erances as identified through safety risk assessment),
and adapt the specifying scenario set to the evolving
operating environment.

Behavioral Uncertainty

We restrict our considerations on learning-enabled
components to a widely popular class of ANNs. This
ANN is a deterministic function. Because of nonlin-

ear activation functions, however, its input-output
behavior contains considerable uncertainty: Training
instances may or may not be represented correctly
by the ANN, and it is usually unclear how, and how
much, the input-output behavior of an ANN general-
izes from training instances. The success of one-pixel
attacks serves as a reminder of the limited gener-
alizability and resilience of some machine-learned
models. Establishing the resilience [23] or invariance
properties — for example, invariance with respect to
certain affine or homeomorphic transformations —
of an ANN is an important means of reducing uncer-
tainty in the input-output behavior. Some uncertainty
about outcomes, however, remains. A systematic
framework for analyzing different sources of uncer-
tainty for ANNs is described in [39].

Measuring behavioral uncertainty. Entropy may be
used to quantify the uncertainty of a neural network.
Indeed, under mild assumptions on uncertainty,
entropy is the only possible definition of uncertainty
[40], at least in its aleatoric interpretation. Behavioral
uncertainty has a multitude of indicators. The work
in [41], for example, proposes using the distance
between neuron activations observed during trai-
ning and the activation pattern for the current input
to estimate input-output behavior uncertainty.

Training-based estimation of behavioral uncertainty.
Ensembles of neural networks, for example, esti-
mate predictive uncertainty by training a certain
number of NNs from different initializations and
sometimes on differing versions of the dataset. The
variance in the ensemble’s predictions is interpreted
as its epistemic uncertainty. Instances of ensemble
learning techniques, such as Bayesian neural net-
works (BNNs) [42], measure epistemic uncertainty
P(θ|D) on model parameters θ and the aleatoric
uncertainty P(Y|X, θ).

In fact, the predicted uncertainty of BNNs is often
more consistent with observed errors compared to
classical neural networks. The out-of-training dis-
tribution points of a BNN lead to high epistemic
uncertainty. The uncertainty P(θ|D) can be reduced
with more data. BNNs are also an interesting ap-
proach to active learning, as one can interpret the
model predictions and see if, for a given input, diffe-
rent probable parametrizations lead to different pre-
dictions. In the latter case, the labeling of this input
will effectively reduce the epistemic uncertainty.

19

Uncertainty Propagation

What we really should care about is not freedom
from faults but an absence of failure [43]. Particularly,
if a perception unit fails to meet its safety specifica-
tion, then we call this unit faulty, and if the overall
cognitive system loop fails to act safely, then a sys-
tem failure occurs. Using the corresponding random
variables Faulty and Failure, we are interested in the
probability that the system is safe, that is, P(not Failure);
using Bayes’ rule, we obtain:

P(Failure | Faulty) ∗ P(Faulty) = P(Faulty | Failure) ∗ P(Failure)

Provably distributions [44] are used to estimate the
posterior probability P(Failure | Faulty) of faulty be-
haviors leading to safety violations.35 The probability
P(Faulty) that the perception unit is faulty is approx-
imated, for instance, using a training-based estimate
of behavioral uncertainty (as described above) or
from an assurance-based estimate of uncertainty (as
described below). Now, assuming that all but the
perception unit are possibly perfect and that the
faulty perception unit is the only possible cause
of failure, P(Faulty|Failure) = 1. Consequently, we
can estimate P(not Failure) = 1 − P(Failure) using
Bayesian inference.

This short exposition of the propagation of compo-
nent faults to system safety failures is intended to
demonstrate a possible style of Bayesian inference for
establishing safety results. The underlying methodolo-
gy, however, should also be applicable for more gen-
eral mutually recursive system architectures.

Assurance-based Uncertainty Estimation

The goal of rigorous design is to gain sufficient
confidence that failures, in our case safety violations,
are very rare up to tolerable quantities. However,
sufficient confidence cannot be constructed by
considering failures only.

Instead, assurance constructs a convincing case that
failures are rare. One widely quoted definition of the
corresponding notion of a safety case comes from
[45]: “A safety case is a structured argument, support-
ed by a body of evidence that provides a compelling,
comprehensible, and valid case that a system is safe
for a given application in a given operating environ-
ment.” An assurance case is simply the generalization
of a safety case to properties other than safety.
An assurance case, therefore, is a comprehensive,

defensible, and valid justification of the safety of a
system for a given application in a defined operat-
ing context. It is based on a structured argument of
safety considerations across the system lifecycle,
which can assist in convincing the various stake-
holders that the system is acceptably safe.

The purpose is, broadly, to demonstrate that the
safety-related risks associated with specific system
concerns36 have been identified, are well-under-
stood, and have been appropriately mitigated and
that mechanisms are in place to monitor the
effectiveness of safety-related mitigations. In this
sense, an assurance case is a structured argument
for linking safety-related claims through a chain of
arguments to a body of the appropriate evidence.
One of the main benefits of structured arguments
in assurance cases is to explicitly capture the causal
dependencies between claims and the substantiating
evidence.

Altogether, assurance cases are the basis for judging
that a technical system is acceptable for widespread
use. Assurance cases also determine the level of
scrutiny needed to develop and operate acceptably
safe systems. More specifically, assurance cases
determine constraints on the design, implementa-
tion, veryfication, and training strategies, and they
demonstrate the contributions of corresponding
artifacts and activities to the overall system safety.

One may be confident in this assurance based on
“the quality or state of being certain that the assur-
ance case is appropriately and effectively structured,
and correct” [46]. A necessary aspect of gaining
confidence in an assurance case is addressing un-
certainty, which, as we have seen above, may have
several sources. Uncertainty, often impossible to
eliminate, nevertheless undermines confidence and
must therefore be sufficiently bounded.

Recent extensions of assurance cases for reasoning
about confidence and uncertainty [47] are a good
starting point for estimating and managing aleatoric
and epistemic uncertainties for safe AI systems. In
particular, probability theory has been proposed
for quantifying confidence and uncertainty [48],
and epistemic uncertainty is quantified through the
Dempster–Shafer theory of beliefs or Bayesian anal-
ysis [49], the use of Bayesian belief networks [50]
[51] [52], Josang’s opinion triangle [47], evidential
reasoning [53], and weighted averages [54].

4. Uncertainty Quantification

20

However, a slight problem arises with quantifying
confidence in assurance case arguments, as pro-
posed methods on Bayesian belief networks, Demp-
ster–Shafer theory, and similar forms of evidential
reasoning can deliver implausible results [55, 46].
Without strong evidence that the quantified confi-
dence assessments are indeed trustworthy, there is
no plausible justification for relying on any of these
techniques in safety engineering. Alternatively, one
may also look toward a value for the probability of
perfection — based on extreme scrutiny of devel-
opment, artifacts, and code — which is then related
to confidence [56] [57]. Qualitative approaches to-
ward uncertainty, on the other hand, focus on the
reasoning and rationale behind any confidence by
constructing an explicit confidence argument. For
example, eliminative induction is increasing confi-
dence in assurance cases by removing sources of
doubt and using Baconian37 probability to represent
confidence [58]. Eliminative induction first identifies
potential sources of doubt, so-called defeaters, and
then works toward removing them or proving their
irrelevancy.

The search for defeaters, and their possible defeat,
should be systematized and documented as essen-
tial parts of the case [59]. One systematic approach
is through construction and dialectical considera-
tion of counterclaims and countercases. Counter-
claims are natural in confirmation measures as stud-
ied in Bayesian confirmation theory, and counter-
cases are assurance cases for negated claims.

Assurance cases have successfully been applied
to many safety-critical systems, and they are also
flexible enough to be adopted in systems with
learning-enabled components. An overall assurance
framework for AI systems with an emphasis on
quantitative aspects, e.g., breaking down system-
level safety targets to component-level requirements
and supporting claims stated in reliability metrics,

has recently been out-lined [60]. Requirements on
assurance cases for autonomously acting vehicles
with learning-enabled components are addressed,
for example, by UL 4600.38

A mixture of requirements and data-centric metrics
together with corresponding verification techniques,
static and dynamic [61], is needed to establish the
safety of AI systems with ML components.

A successful element in a successful deployment
of safety assurance for AI systems is a library of pre-
validated argument steps [62] [63, 64] together with
adequate operators for instantiating and composing
specific system-specific assurance cases from these
pre-validated structured arguments. We also hypoth-
esize that because of the multitude of sources of
uncertainty, assurance arguments for increasingly
autonomous AI systems need to (1) stress rigor in
assessing the evidence and reasoning employed
and (2) systematize and automate the search for
defeaters, the construction of cases and counter
cases, and the management and representtation of
dialectical examination.

Increased rigor and automation in building and
maintaining assurance cases should enable pro-
ductive interaction with tools for logical and proba-
bilistic reasoning and formal argumentation. Using
frameworks such as STPA [65] to better capture and
examine a component’s control actions in relation
to the larger system-level safety contexts may be
beneficial. How the influence of learning-enabled
components is captured and reasoned within the
AI control structure is of particular interest. Finally,
rigorous assurance cases open new possibilities
for online self-adaptation of safety arguments for
determining safe behavior when operating in un-
certain contexts because they can be adapted,
quickly and efficiently, to the ever-changing safety
considerations of AI systems.

35 Failure and Faulty are random variables, and the conditional probability P(Failure | Faulty) measures the uncertainty that a system
is unsafe (Failure) given that the perception unit violates its specification (Faulty). 36 Including safety and security but also applying
to all the other attributes of trustworthiness. 37 https://ntrs.nasa.gov/api/citations/20160013333/downloads/20160013333.pdf
38 https://ul.org/UL4600

21

A key issue for AI systems is rigorous safety analysis,
which is based on a mixture of well-known verifica-
tion and validation techniques, with safety verification
of learning-enabled components. Here, we focus on
novel aspects of analyzing AI systems with ANN-based
perception units only.

What do we need to verify about ANN components
to support AI system safety? Our starting point here is
the component requirements as obtained by breaking
down application-specific systems safety requirements
to verification and validation requirements for the indi-
vidual components of AI systems.

Because of mounting concerns about using ANNs
for safety-related applications, new techniques have
emerged to increase the trustworthiness of ANNs [66]
[67] [68] [64]. A survey of this ever-growing number of
methods and technologies is well beyond the scope
of these notes. Indeed, individual methods are not
lacking, but the safety relevance of many ANN analysis
techniques (such as adversarial analysis) is questiona-
ble, particularly when the impact of the overall system
within which the ANN is used is unclear [69].

What is needed is a systematic evaluation of individual
analysis techniques. A central challenge is to ade-
quately measure and quantify how well and under
which circumstances they improve confidence in the
safe system behavior. A first step in this direction is
provided in [70], which develops a safety pattern for
choosing and composing analysis techniques based
on how they contribute to identifying and mitigating
systematic faults known to affect system safety. More
generally, given an ANN and desired properties, we
therefore define the goal of ANN analysis to improve
confidence or, dually, reduce uncertainty, if the de-
sired properties hold up to tolerable quantities on the
ANN.

Testing

The goal of ANN testing is to generate a set of test
cases that can demonstrate confidence in an ANN’s
performance, when passed, such that the ANN can
support an assurance case. Usually, test case gene-
ration is guided by structural and nonstructural cover-
age metrics [71].

Traditional structural coverage criteria from software
testing usually cannot be applied directly to ANNs. For
example, neuron coverage is trivially fulfilled in ANNs
using a single test case. Moreover, MC/DC, when

applied to ANNs, may lead to an exponential (in the
number of neurons) number of branches to be inves-
tigated and therefore is not practical, as typical ANNs
comprise millions of neurons. As usual in testing, the
balance between the ability to find bugs and the com-
putational cost of test case generation is essential for
the effectiveness of a test method [72].

Generating falsifying/adversarial test cases is generally
performed using search heuristics based on gradient
descent or evolutionary algorithms [73, 74] [75] [76].
These approaches may be able to find falsifying ex-
amples efficiently, but they usually do not provide an
explicit level of confidence about the nonexistence of
adversarial examples when the algorithm fails to find
one.

The work in [20] developed ANN-specific nonstructur-
al test coverage criteria for the robustness, interpret-
ability, completeness, and correctness of an ANN. A
scenario coverage metric, for example, partitions the
possible input space according to N attributes (e.g.,
snow, rain, …), and proposes, based on the existing
work on combinatorial testing, efficient k-projection
(for k = 0,…,N−1) coverage metrics as approximations
of the exponential number of input partitions. In prin-
ciple, a “complete” (with respect to the available input
data) set of attributes may be obtained through unsu-
pervised learning or clustering methods. These cover-
age metrics are implemented in the NNDK testing
toolkit for ANNs [77].

In [78], coverage is enforced to finite partitions of the
input space, relying on predefined sets of application-
specific scenario attributes. In a similar vein, the “box-
ing clever” technique focuses on distributing training
data and divides the input domain into a series of rep-
resentative boxes.

Many traditional test case generation techniques,
such as fuzzing [79, 80, 75] [81], symbolic execution
[82], concolic testing [83], mutation testing [84], and
metamorphic testing [85], have been extended to sup-
port the verification of ANNs. Despite their effective-
ness in discovering various defects of ANNs together
with their data-centric requirement specifications, it is
not exactly clear how testing-based approaches can
be efficiently integrated into the construction of con-
vincing safety argumentations for AI systems. A possi-
ble step in this direction, however, is the NNDK-based
safety case in Figure 4, which makes the contribution
and the rationale behind individual test metrics in es-
tablishing safety goals more explicit.

5. Analysis

22

´The NN software performs the
desired function as intended,

under a frequency of X%

G1

Ensure that the data
collection process

is correct

G2

Correct
labeling

G6

Quanti.
projection
coverage

metric

Sn1

Synthesis
of new data

Sn2

Scenario-
based

performance
loss metric

Sn3

Classifier
to achieve

X% on
the set

Sn7

Neuron
k-activation

coverage
metric

Sn4

Interpret.
precision

metric

Sn5

Occlusion
sensitivity

metric

Sn6

Perturbati-
on loss
metric

Sn8

Static
analysis /

formal
verification

Sn9

Runtime
neuron

activation
pattern

monitoring

Sn10

The data
fully reflect
all possible
operating
conditions

G7

Train a
classifier to
achieve X%

G8

Understand & improve
all underperformed

scenarios

G9

Ensure that
the decision

of the
network
is under-

standable &
human

interpretable

G10

Correct
behavior
by known

perturbation

G11

Correct
behavior

 w.r.t.
specification

in A3

G12

Have an
understan-

ding if
decision
is backed
by prior

similarities

Ensure that network
performs correctly in
training / validation

G3
Ensure that no undesired

behavior will appear in
testing / generalization

G4
Ensure that the data
collection process

is correct

G5

No SW programming
problem occurs

Ensure that no undesired
behavior will appear

S1

S3

Ensure performance on
all performed scenarios
(i.e., it is not X% because

NN does particularly
good in some setup)

S2

A1

No HW failure
occurs

A2

Vision-based NN

A5

Apart from data,
some domain knowledge
can be formally specified

A3

Close-to output layer neuron
on-o� patterns represent

di�erent scenarios

A4

Figure 4 NNDK-based assurance case.

23

Altogether, testing methods seem to be effective
at discovering the defects of ANNs. It is unclear,
however, how to measure the effectiveness of test
coverage metrics in constructing sufficient confi-
dence — or dually, raising doubts — in a convincing
assurance case. In addition, most testing-based ap-
proaches assume a fixed ANN. However, ANNs are
learning-enabled and trained continuously on new
data/scenarios. The challenge is to invent meth-
odologies for efficiently — and depending on the
application context, in real time — retesting safety
requirements for continuously evolving ANNs. This
retesting methodology could be based on adapting
corresponding assurance cases.

Instead of validating individual learning-enabled
components, the idea of scenario-based testing is
to (1) automatically or manually identify a reasona-
bly small set of relevant dynamic situations or sce-
nario types; (2) check if the set of scenario types is
complete; and then (3) derive system-specific tests
for each scenario type. The need for a test-ending
criterion immediately arises based on the following
question: did we test all scenario types? In addition,
did we sufficiently test each type with specific in-
stances?

The general approach to scenario-based testing is
outlined in Figure 5. It is based on automated clus-
tering of real driving data and completeness checks
for the clusters thus obtained [86].

Symbolic Verification

Safety verification problems for ANNs can be re-
duced to constraint solving problems, such as sat-
isfiability in propositional logic [87] [88], satisfiability
modulo theories [89] [90] [91] [92], and mixed-inte-
ger linear programming [23]. These approaches typ-
ically do not scale up to the size of real-world ANNs
with millions of neurons. Approximation techniques
are applied to improve efficiency but usually at the
expense of precision. Recent approaches based on
global optimization potentially can address larger
networks [93]. Compositional verification tech-
niques for scaling up ANN safety verification are
largely missing. For the assume-guarantee style of
reasoning applied to verifying an ANN-based auto-
motive safety controller, however, see [94].

Because symbolic safety verification technologies
work on a model of an ANN, they might have cer-
tain defects due to implementation issues (for ex-

ample, rational numbers vs. IEEE floating-point im-
plementations). In addition, how to efficiently apply
these techniques to continuously changing ANNs is
unclear.

Runtime Verification

In runtime verification, a monitor observes the
concrete execution of the system in question and
checks for violations of stipulated properties. When
the monitor detects a violation of a property, it no-
tifies a command module, which then isolates the
cause of the violation and attempts to recover from
the violation. In this way, runtime verification is a
central element of FDIR-based40 fault-tolerant
systems.

For the multitude of sources of uncertainty in AI
systems, stringent real-time requirements, and ever-
changing learning-enabled components, runtime
verification is an essential element for the safety
verification of AI systems.

System requirements of the form “the system must
perform action a within n seconds of event e” are
common in the runtime monitoring of autono-
mous systems [95]. These types of properties are
expressible in suitable sub-logics of metric temporal
logic, such as GXW [96] [97, 52] and the timed ex-
tensions thereof [98]. These types of specifications
are compiled into (timed) synchronous dataflows as
the basis for efficient runtime monitors. A dynamic
programming and rewriting-based algorithm for
monitoring MTL formulas is described in [99]. More-
over, architectural design principles for monitoring
distributed systems are needed to ensure that moni-
toring does not perturb the system (at least, not too
much) [74]. In particular, the tutorial [100] discusses
the challenges of instrumenting real-time systems
so that the timing constraints of the system are
respected. A recent tutorial describes state-of-the-
practice technology for generating runtime moni-
tors that capture the safe operational environment
of systems with AI/ML components [101].

Altogether, runtime verification is an essential and
attractive technique of any verification strategy for
safe AI. Unlike static verification techniques, such as
testing or symbolic verification, adaptation to learn-
ing-based components, such as ANNs, is unneces-
sary. In this way, runtime monitoring is an enabling
verification technology for continuous assurance,
based on the MAPE-K41 loop from autonomic com-

5. Analysis

24

puting. The main challenge in deploying runtime
monitoring, as with any other cyber-physical
system, is to embed monitors in an efficient (for
example, energy-efficient) way without perturbing
the behavior of the AI system too much.

Runtime monitoring may also be used to measure
uncertainties in the input-output behavior of ANNs.
For example, if an input is out-of-distribution of the
training set, then one may conclude that the “cor-
rectness” of the corresponding ANN output may be
doubtful. Such information about the uncertainty of
a perception result may be useful input for planning
in the deliberation stage. Uncertainty information
about the perception unit is also used in Simplex
architectures to switch to a safe(r) perception chan-
nel whenever the ANN output is doubtful. Clearly,
the distance (in some given metric) of the input to
the training input set may serve as a measure of
the uncertainty of the input-output behavior of an
ANN. However, this measure returns zero uncertain-
ty even for the “incorrect” behavior of the ANN on
training inputs. Alternatively, [102] proposes to mon-
itor the neuronal activation pattern of some input

and to compare it with neuronal activation pat-
terns as learned during the ANN training phase.
This measure of the input-output behavior certainty
of an ANN is part of the assurance case for the
ANN in Figure 4. In addition, applicable background
knowledge and physical laws may also be used to
monitor the plausibility of the input-output behavior
of an ANN.

In summary, because of the multitude of sources
of uncertainty, the complexity of AI-based systems
and the environments in which they operate, even
if all the challenges for specification and verifica-
tion are solved, one will likely be unable to prove
unconditional safe and correct operation. Situations
in which we do not have a provable guarantee of
correctness will always arise. Therefore, techniques
for achieving fault tolerance and error resilience at
run time must play a crucial role. There is, however,
not yet a systematic understanding of what can be
achieved at design time, how the design process
can contribute to the safe and correct operation of
the AI system at run time, and how the design-time
and runtime techniques can interoperate effectively.

39 Adapted from: https://doi.org/10.1109/ITSC.2019.8917326 40 Fault Detection, Isolation, and Recovery. 41 Measure, Analyze, Plan,
Execute; the K stands for knowledge.

Figure 5 Scenario-based testing.39

Automatic
Clustering

Manual
Derivation

Test Case
Generation

Completeness
Check (CCP)

Scenario
Types

Real Driving
Data

Specific
System Model

Test Cases

Requirements

START

YES
YES

NO

NO

END

Data flow

Control flow

10

9

8

7

6

5

3

2

1

4

25

Validation and verification activities are usually com-
plemented with safety-by-construction design steps.
We briefly describe some of the main challenges and
initial approaches toward safety-by-design, namely,
property-driven synthesis of learning-enabled com-
ponents, compositional construction of AI subsys-
tems and systems, and safety architectures for AI
systems. The goal in this respect is a fundamental set
of building blocks together with composition and in-
cremental change operators for safety-by-construc-
tion design and continual assurance of large classes
of AI systems.

Property-driven Synthesis

Instead of using a posteriori verification of desirable
properties of ANNs via static or dynamic verification
technologies as outlined above, can we design, from
scratch, a ML component that provably satisfies (pos-
sible in a robust interpretation) given formal specifi-
cations? For example, given the pre- and postcondi-
tions of an ANN, as obtained from breaking system
safety envelopes down to individual learning-enabled
components, can an ANN that satisfies the given
safety specification be trained? Given a property
expressed in logic, for example, one constructs a
corresponding differentiable loss function for prop-
erty-driven training of the ANN. In this way, prop-
erty-driven synthesis needs to, among other things,
design an appropriate training set, set up the initial
structure of the ANN, and choose and adjust appro-
priate hyper-parameters for training. The selection of
training sets and training is then guided by reducing
an adequate measure of the uncertainty so that the
ANN indeed satisfies the given specification.

Progress is needed along all these fronts. Techniques
of neuro-symbolic computation [103] [104] may be
a good starting point, as they also try to integrate
high-level reasoning with low-level perception such
that neuro-symbolic methods have the pure neural,
logical, and probabilistic methods as special cases.
A short history and perspectives of knowledge-
augmented ML are described in [32].

Compositional System Design

The triad of perception, deliberation, and execution,
as depicted in Figure 1, is the simplest possible archi-
tecture of an AI system. Often, deliberation and exe-
cution units are complex and mutually dependent for
realizing a fine-grained control; perception may also
depend on deliberation, say, in AI systems with active

perception. Moreover, each stage of an AI system
triad is usually decomposed into any number of
functional units, including monitors and safe chan-
nels. For example, deliberation may include func-
tionnalities for modeling AI capabilities such as inter-
pretation and prediction, model building, derivation
of knowledge, goal management, or planning, and
perception is decomposed into a pipeline of tasks for,
say, internal and external state estimation, sensor fu-
sion, object recognition, and object classification. This
real-world architecture for realizing an autonomous
driving function can be found, for example,
in [105].42

Traditional Simplex architectures [106] are used to
address the performance and safety requirements of
many automated and autonomous systems [107] [108]
[109] [110] by leveraging runtime assurance, where the
results of design-time verification are used to build a
system that monitors itself and its environment at run
time. More precisely, a Simplex architecture comprises
(1) a performant controller under nominal operating
conditions, which is designed to achieve high perfor-
mance, but it is not provably safe, (2) a safe controller
that can be pre-certified to be safe, and (3) a decision
module that is pre-certified (or safe-by-design) to mo-
nitor the state of the controlled system and its opera-
tional environment to check whether desired system
safety specifications can be violated. If so, the decision
module switches control from the nominal monitor to
the safe monitor. A provably safe composition of Sim-
plex architectures is developed in the context of Soter
[111], which also allows for switching to nominal cont-
rol to minimize performance penalties while retaining
strong safety guarantees.

Although compositional design operators have been
developed for digital circuits and embedded systems,
we do not yet have such comprehensive theories for
AI systems. For example, if two ANNs are used for per-
ception on two types of sensors, say LiDAR and a ca-
mera, and individually satisfy their specifications under
certain assumptions, under what conditions can they
be used together to decrease perception uncertainty?
More generally, how can we compositionally design
safe and predictable perception pipelines? How can
one design planning and deliberation components
for overcoming the inherent limitations of their ANN-
based perception component? How can one design
execution components for minimizing surprises in
uncertain environments? Additionally, how can these
components interact in a safe and quasi-predictable43

manner?

6. Safety-by-Design

26

42 This publication advocates the use of state-of-the-practice dependability and safety engineering methodologies as prescribed in cur-
rent industrial safety standards42 for saving SAE L3 and L4 automated driving capabilities. 43 That is, predictable up to acceptable levels.

27

We have been arguing that traditional safety engi-
neering is unsuited for developing and operating AI
systems. On the basis of this insight, we outlined a
safety engineering methodology for AI that is cen-
tered around managing and assuring uncertainty to
acceptable levels [112, 76] as the basis for predictable
(up to acceptable tolerances) and safe AI systems.

The proposed rigorous design methodology for safe
AI is based on the central notion of a safety case for
managing uncertainties. Our proposals are com-
patible with the emergent standard UL460044 on
required properties for safety cases. In some sense,
the depicted design methodology may also be con-
sidered an uncertainty-based amalgam of the para-
digms of data — with model-driven design.

The main contribution lies in identifying the core
challenges and possible research directions for the
specification, design, analysis, assurance, and main-
tenance of safe AI (for a summary, see Table 1). This
list, however, is incomplete, as we have omitted, for
instance, all-important systems challenges due to
interactive control between human operators and
machine-based control.

The identified challenges for safe AI, as listed in
Table 1,do not seem insurmountable. The over-
arching challenge rather lies in integrating indivi-
dual methods into a coherent and comprehensive
engineering framework for systematically managing
and reducing uncertainty to tolerable quantities
and demonstrating its relative merits in real-world
AI systems.

We have been working toward AI safety engineering,
among others, with Fasten ([113, 20] for checkable
safety cases, evidential transactions in Evidentia/
CyberGSN for continual assurance and compliance
[114], the neural network dependability kit [77] for

analyzing ANNs, and risk-based safety envelopes for
autonomous vehicles under perception uncertainty
[115]. We are also currently working on concrete safe
AI use cases to integrate these individual engineering
nuggets and to elaborate on a generally useful ap-
proach for safe AI engineering. We hypothesize that
uncertainty quantification also plays an increasingly
prominent role in analyzing and certifying complex
software systems because traditional notions of sys-
tem-level correctness are becoming less applicable
for heterogeneous and ever-evolving software land-
scapes.

There are related ideas on uncertainty quantification
in engineering [80] for certifying that, with high
probability, a real-valued response function of a giv-
en physical system does not exceed a given safety
threshold. Uncertainty quantification also plays a piv-
otal role in minimizing uncertainties for ANNs [116].
We expect these types of techniques to provide a
mathematical underpinning of a design calculus for
safe AI.

The ultimate goal in this respect is a rigorous engi-
neering framework based on pre-certified param-
eterized components, corresponding assurance
arguments, and system composition operators (for
example, for watchdogs, monitors, and redundant
channels) from which complete systems and corre-
sponding assurance cases are constructed in a
property-guided, traceable, and optimized manner.

In addition, onboard management of uncertainty
is used to design safe exploration strategies of un-
known territory based on the principle of managing
uncertainty and to minimize surprises. This type of
safe exploration of an AI system might even be com-
plemented with an online risk and safety assessment,
together with corresponding online updates of safety
cases and the uncertainty quantifications thereof.

7. Conclusions

28

44 https://edge-case-research.com/ul4600/ 45 That is, calculating from a set of observations the causal factors that produced them.
46 Cmp. AMLAS 47 In analogy to, say, Mils separation kernel protection profile.

Table 1 Safe AI Engineering Challenges.

Safe AI— Munich Center for Trustworthy AI: 29
How is this possible? fortiss and Fraunhofer IKS

Table 1. Safe AI Engineering Challenges.

44 That is, calculating from a set of observations the causal factors that produced them.
45 Cmp. AMLAS
46 In analogy to, say, Mils separation kernel protection profile.

Specification

Challenge

Uncertainty

Challenge

Assurance
Challenge

Design

Challenge

Analysis
Challenge

Maintenance
Challenge

• Provide the means for constructing (and maintaining) safety envelopes, either

deductively from safety analysis or inductively from safe nominal behavior

• Provide the means for minimizing uncertainties related to safety envelopes
with a given level of effort

• Provide the means for deriving safety requirements for learning-enabled
components, which are sufficient for establishing AI system safety

• Provide the means for reducing specification uncertainty using deriving data
requirements for learning-enabled components

• Identify all relevant sources of uncertainty for an AI system

• Provide adequate means for measuring uncertainty

• Calculate forward propagation of uncertainty, where the various sources of
uncertainty are propagated through the model to predict overall uncertainty

in the system response

• Identify and solve the relevant inverse45 uncertainty quantification problems
for safe AI

• Predict (up to tolerable quantities) unsafe behavior of AI systems operating in
uncertain environments

• Provide adequate measures of uncertainty for assuring AI system safety

• Construct and maintain evidence-based arguments for supporting the
certainty and for rebutting the uncertainty of safety claims

• Identify useful safety case patterns46 for safe AI systems and identify
corresponding operators for instantiating and composing these patterns

• Develop safety case patterns for different architectural designs of AI systems47

• Compositionally construct safe and quasi-predictable AI systems together
with their safety cases

• Provide adequate means for measuring and reducing uncertainty in the input-
output behavior of learning-enabled components

• Define and measure the respective contribution of static and dynamic
analysis techniques for learning-enabled systems to reduce safety-related
uncertainty to tolerable levels

• Identify incremental change operators for maintaining the uncertainty and
safety assurance of self-learning AI systems

• Safely adapt and optimize the situational behavior of an AI system (together

with its safety cases based on the principle of minimizing uncertainty)

29

References

[1] Rushby, “Quality measures and assurance for
AI software,” in NASA Contractor Report 4187,
1988.

[2] Rodd, Safe AI - is this possible?, Elsevier, 1994.
[3] Amodei, Olah, Steinhardt, Christiano, Schulman

and Mané, Concrete problems in AI safety,
2016.

[4] Bhattacharyya, Cofer, Musliner, Mueller and
Engstrom, Certification considerations for
adaptive systems, IEEE, 2015.

[5] Geisberger and Broy, Living in a networked
world: Integrated research agenda Cyber-
Physical Systems (agendaCPS), Herbert Utz
Verlag, 2015.

[6] Pinker, “Rationality,” 2021.
[7] S. Burton, J. McDermid, P. Garnet and R. Weaver,

“Safety, Complexity, and Automated Driving:
Holistic Perspectives on Safety Assurance,”
IEEE Computer, vol. 54, no. 8, pp. 22-32, 2021.

[8] R. Gansch and A. Adee, “System theoretic view
on uncertainties,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE),
2020.

[9] S. Burton, I. Habli, T. Lawton, J. McDermid, P.
Morgan and Z. Porter, “Mind the gaps: Assuring
the safety of autonomous systems from an
engineering, ethical, and legal perspective,”
Artificial Intelligence, vol. 279, 2020.

[10] S. Burton, I. Kurzidem, A. Schwaiger, P. Schleiß,
M. Unterreiner, T. Graeber and P. Becker, “Safety
Assurance of Machine Learning for Chassis
Control Functions,” in International Confer-
ence on Computer Safety, Reliability, and
Security, York, U.K., 2021.

[11] Blanquart, Fleury, Hernek, Honvault, Ingrand,
Poncet, Powell, Strady-Lécubin and Thévenod,
Software Product Assurance for Autonomy
On-Board Spacecraft, ESA SP-532, 2003.

[12] Sculley, Holt, Golovin, Davydov, Phillips, Ebner
and Young, Machine learning: The high interest
credit card of technical debt, http://research.
google/pubs/pub43146/, 2014.

[13] Alves, Bhatt, Hall, Driscoll, Murugesan and
Rushby, Considerations in assuring safety of
increasingly autonomous systems, NASA, 2018.

[14] Holloway, “Understanding the Overarching
Properties: First Steps,” 2018.

[15] Björkman, Internal cue theory: Calibration
and resolution of confidence in general
knowledge, 1994.

[16] SOTIF, ISO/PAS 21448:2018, Road Vehicles –
Safety of the Intended Functionality, Draft,
2017.

[17] ‘Shalev-Schwartz, Shammah and Shashua,
 Vision Zero: Can Roadway Accidents be Elimi-

nated without Compromising Traffic Through-
put, https://export.arxiv.org/abs/1901.05022,
2018.

[18] Koopman, Osyk and Weast, Autonomous ve-
hicles meet the physical world: Rss, variability,
uncertainty, and proving safety, Springer, 2019.

[19] Tiwari, Dutertre, Jovanović, d. Candia, Lincoln,
Rushby and Seshia, Safety Envelope for Security,
2014.

[20] Cheng, Huang, Nührenberg and Ruess,
“Towards dependability metrics for neural
networks,” 16th ACM/IEEE International Con-
ference on Formal Methods and Models for
System Design (MEMOCODE), 2018.

[21] Hauer, Gerostathopoulos, Schmidt and
Pretschner, Clustering traffic scenarios using
mental models as little as possible, IEEE, 2020.

[22] Su, Vargas and Sakurai, One pixel attack for
fooling deep neural networks, 2019.

[23] Cheng, Nührenberg and Rueß, Maximum
resilience of artificial neural networks, Springer,
2017.

[24] Seshia, Desai, Dreossi, Fremont, Ghosh, Kim
and Yue, Formal Specification for Deep Neural
Networks, Springer, 2018.

[25] Dutta, Jha, Sanakaranarayanan and Tiwari, Out-
put range analysis for deep neural networks,
arXiv:1709.09130, 2017.

[26] Dvijotham, Stanforth, Gowal, Mann and Kohli,
A dual approach to scalable verification of
deep networks, arXiv:1803.06567, 2018.

[27] Goyal, Dumancic and Blockeel, “SaDe: Learn-
ing Models that Provably Satisfy Domain Con-
straints,” inarXiv:2112.00552, 2021.

[28] Giannakopoluou, Păsăreanu and Barringer,
Assumption generation for software compo-
nent verification, IEEE, 2002.

[29] Păsăreanu, Gopinath and Yu, Compositional
verification for autonomous systems with
deep learning components., Springer, 2019.

[30] Sotoudeh and Thakur, A Symbolic neural net-
work representation and its application to un-
derstanding, verifying, and patching networks,
2019.

[31] Gopinath, Converse, Pasareanu and Taly,
Property Inference for Deep Neural Networks,
IEEE, 2019.

[32] Sagel, Sahu, Matthes, Pfeifer, Qiu, Rueß, Shen
and Wörmann, Knowledge as Invariance -
History and Perspectives of Knowledge-
augmented Machine Learning, 2020.

30

[33] T. Dietterich, Steps Toward Robust Artificial
Intelligence, 2017.

[34] Hüllermeier and Waegeman, Aleatoric and
epistemic uncertainty in machine learning: an
introduction to concepts and methods,, 2021.

[35] Aggarwal, Kong, Gu, Han and Philip, Active
learning: A survey, CRC Press, 2014.

[36] Mitchell, The need for biases in learning
generalizations, 1980.

[37] Weyns, Bencomo, Calinescu and et.al., „Per-
petual Assurances for Self-Adaptive Systems“.

[38] Seshia, Sadigh and Sastry, Towards Verified
Artificial Intelligence, 2016.

[39] Czarnecki and Salay, Towards a framework
for managing perception uncertainty for safe
automated driving, Springer, 2018.

[40] Robinson, Entropy and Uncertainty, 2008.
[41] Cheng, Nührenberg and Yasuoka, „Runtime

monitoring neuron activation patterns,“ 2019.
[42] Jospin, Buntine, Boussaid, Laga and Ben-

namoun, Hands-on bayesian neural networks
- a tutorial for deep learning users, 2020.

[43] Rushby, The Indefeasibility Criterion for Assur-
ance Cases, 2020.

[44] Zhao, Littlewood, Povyakalo, Strigini and
Wright, Modelling the probability of failure on
demand (pfd) of a 1-out-of-2 system in which
one channel is “quasi-perfect”, 2017.

[45] UK Ministry of Defence:, Defence Standard
00-56, Issue 4: Safety Management Require-
ments for Defence Systems. Part 1: Require-
ments., 2007.

[46] Grigorova and Maibaum, Taking a page from
the law books: Considering evidence weight
in evaluating assurance case confidence,
IEEE, 2013.

[47] Duan, Rayadurgam, Heimdahl, Ayoub, Sokolsky
and Lee, Reasoning About confidence and
uncertainty in assurance cases: A survey,
2014.

[48] Bloomfield, Littlewood and Wright, Confi-
dence: its role independability cases for risk
assessment., 2007.

[49] Swiler, Paez and Mayes, Epistemic uncertainty
quantification tutorial, 2009.

[50] Littlewood and Wright, The use of multilegged
arguments to increase confidence in safety
claims for software-based systems: A study
based on a BBN analysis of an idealized
example., IEEE, 2007.

[51] Zhao, Zhang, Lu and Zeng, A new approach
to assessment of confidence in assurance
cases., Springer, 2012.

[52] Dennney, Pai and Habli, Towards measure-
ment of uncertainty in safety cases, IEEE,
2011.

[53] Nair, Walkinshaw, Kelly and d. l. Vara, An
evidential reasoning approach for assessing
confidence in safety evidence, 2015.

[54] Yamamoto, Assuring security through
attribute GSN, 2015.

[55] Graydon and Holloway, An investigation of
proposed techniques for quantifying confi-
dence in assurance arguments, 2017.

[56] Rushby, Formalism in safety cases., 2010.
[57] Rushby, Logic and epistemology in safety

cases., 2013.
[58] Goodenough, Weinstock and Klein, Toward

a theory ofassurance case confidence.,
Carnegie-Mellon University, 2012.

[59] Bloomfield and Rushby, Assurance 2.0:
A manifesto, 2020.

[60] Zhao, Huang, Bharti, Dong, Cox, Banks, Wang,
Schewe and Huang, „Reliability assessment
and safety arguments for machine learning
components in assuring learning-enabled
autonomous systems,“ in arXiv:2112.00646,
2021.

[61] McDermid, Jia and Habli, Towards a frame-
work for safety assurance of autonomous
systems, 2019.

[62] Bloomfield and Netkachova, Building blocks
for assurance cases, IEEE, 2014.

[63] Hawkins, Paterson, Picardi, Jia, Calinescu and
Habli, Guidance on the assurance of machine
learning in autonomous systems (AMLAS),
2021.

[64] Houben, Abrecht, Akila, Bär, Brockherde, Feifel
and Woehrle, Inspect, understand, overcome:
A survey of practical methods for AI safety,
2021.

[65] Abdulkhaleq, Wagner and Leveson, „A com-
prehensive safety engineering approach for
software-intensive systems based on STPA,“ in
Procedia Engineering, 2015.

[66] Huang, A Survey of Safety and Trustworthiness
of Deep Neural Networks: Verification, Test-
ing, Adversarial Attack and Defence, and Inter-
pretability, arXiv:1812.08342v5, 2020.

[67] Xiang, Musau, Wild, Lopez, Hamilton, Yang
and Johnson, Verification for machine learn-
ing, autonomy, and neural networks survey,
2018.

[68] Schwalbe and Schels, A Survey on Methods
for the Safety Assurance of Machine Learning
Based Systems, 2020.

31

[69] Dreossi, Jha and Seshia, Semantic adversarial
deep learning, Springer, 2018.

[70] Cârlan, Gallina, Kacianka and Breu, Arguing on
software-level verification techniques appro-
priateness, Springer, 2017.

[71] Chen, Yan, Wang, Kang and Wu, Deep neural
network test coverage: How far are we?,
arXiv:2010.04946v2, 2014.

[72] Sun, Huang, Kroening, Sharp, Hill and Ash-
more, Testing deep neural networks, 2019.

[73] Goodfellow, Shlens and Szegedy, Explaining
and harnessing adversarial examples, 2014.

[74] Goodloe and Pike, Monitoring distributed
real-time systems: a survey and future direc-
tions, National Aeronautics and Space Admin-
istration, Langley Research Center, 2010.

[75] Papernot, McDaniel, Jha, Fredrikson, Celik
and Swami, The limitations of deep learning in
adversarial settings, IEEE, 2016.

[76] Carlini and Wagner, Towards evaluating the
robustness of neural networks, IEEE, 2017.

[77] Sahu, Vállez, Rodríguez-Bobada, Alhaddad,
Moured and Neugschwandtner, Application
of the neural network dependability kit in
real-world environments, 2020.

[78] Cheng, Huang and Yasuoka, Quantitative
projection coverage for testing ml-enabled
autonomous systems, Springer, 2018.

[79] Odena, Olsson, Andersen and Goodfellow,
TensorFuzz: Debugging neural networks with
coverage-guided fuzzing, PMLR, 2018.

[80] Owhadi, Scovel, Sullivan, McKerns and Ortiz,
Optimal uncertainty quantification, 2013.

[81] Xie, Ma, Juefei-Xu, Chen, Xue, Li and See,
Coverage-guided fuzzing for deep neural
networks, 2018.

[82] Gopinath, Wang, Zhang, Pasareanu and
Khurshid, Symbolic execution for deep neural
networks, arXiv:1807.10439, 2018.

[83] Sun, Wu, Ruan, Huang, Kwiatkowska and
Kroening, Concolic testing for deep neural
networks, IEEE, 2018.

[84] Shen, Wan and Chen, MuNN: Mutation analy-
sis of neural networks, IEEE, 2018.

[85] Zhang, Zhang, Liu and Khurshid, Deep-Road:
GAN-based metamorphic autonomous
driving system testing, IEEE, 2018.

[86] Hauer, Schmidt, Holzmüller and Pretschner,
Did we test all scenarios for automated and
autonomous driving systems?, IEEE, 2019.

[87] Cheng, Nührenberg, Huang and Ruess,
Verification of binarized neural networks
via inter-neuron factoring, Springer, 2018.

[88] Narodytska, Kasiviswanathan, Ryzhyk, Sagiv
and Walsh, Verifying properties of binarized
deep neural networks, 2018.

[89] Huang, Kwiatkowska, Wang and Wu, Safety
verification of deep neural networks, Springer,
2017.

[90] T. Pulina, An Abstraction-Refinement
approach to verification of artificial neural
networks, 2010.

[91] Katz, Barrett, Dill, Julian and Kochendoerfer,
Reluplex: An efficient SMT solver for verifying
deep neural networks, Springer, 2017.

[92] Tuncali, Ito, Kapinski and Deshmukh, Reason-
ing about safety of learning-enabled compo-
nents in autonomous cyber-physical systems,
2018.

[93] Ruan, Huang and Kwiatkowska, Reachability
analysis of deep neural networks with
provable guarantess, 2018.

[94] Cheng, Huang, Brunner and Hashemi,
Towards safety verification of direct
perception neural networks, IEEE, 2020.

[95] Kane, Chowdhury, Datta and Koopman,
A case study on runtime monitoring of an
autonomous research vehicle (ARV) system,
Springer, LNCS, 2015.

[96] Cheng, Hamza and Rueß, Structural Synthesis
for GXW Specifications, Springer, LNCS, 2016.

[97] Cheng, Lee and Rueß, Autocode4: Structural
controller synthesis, Springer, LNCS, 2017.

[98] Xin and Rueß, Actor-based Synthesis for
Timed GXW, 2021.

[99] Thati and Roşu, Monitoring algorithms for
metric temporal logic specifications., 2005.

[100] Bonakdarpour and Fischmeister, Runtime-
monitoring of time-sensitive systems,
Springer, 2011.

[101] Torfah, Junges, Fremont and Seshia, „Formal
Analysis of AI-Based Autonomy: From Modeling
to Runtime Assurance,“ in International Confer-
ence on Runtime Verification, pp. 311-330.

[102] Cheng, Nührenberg and Yasuoka, Runtime
monitoring neuron activation patterns, IEEE,
2019.

[103] d. Raedt, Manhaeve and Dumancic, Neuro-
Symbolic = Neural + Logical + Probabilistic,
2019.

References

32

[104] Riegel and et.al., „Logical neural networks,“
arXiv:2006.13155, 2020.

[105] Aptiv, Audi, Baidu, BMW, Continental, Daimler,
FCA, HERE, Infineon, Intel and Volkswagen,
Safety first for automated driving, https://
www.daimler.com/documents/innovation/
other/safety-first-for-automated-driving.pdf,
2019.

[106] Sha, Using simplicity to control complexity,
IEEE, 2001.

[107] Schiemann, DeVore, Richards, Gandhi, Cooper,
Horneman, Stoller and Smolka, Runtime as-
surance framework development for highly
adaptive flight control systems,, Charlottes-
ville: Barron Associates Inc., 2001.

[108] Bak, Manamcheri, Mitra and Caccamo, Sand-
boxing controllers for cyber-physical systems,,
IEEE, 2011.

[109] Phan, Yang, Clark, Grosu, Schierman, Smolka
and Stoller, A component-based simplex
architecture for high-assurance cyber-physical
systems, arXiv:1704.04759, 2017.

[110] Aswani, Bouffard and Tomlin, Extensions
of learning-based model predictive control
for real-time application to a quadrotor
helicopter, IEEE, 2012.

[111] Desai, Ghosh, Seshia, Shankar and Tiwari,
SOTER: a runtime assurance framework for
programming safe robotics systems, IEEE,
2019.

[112] Chechik, Salay, Viger, Kokali and Rahimi,
Software Assurance in an Uncertain World,
Springer, 2019.

[113] Cârlan and Ratiu, FASTEN.Safe: A model-
driven engineering tool to experiment with
checkable assurance cases, Springer, Inter-
national Conference on Computer Safety,
Reliability, and Security.

[114] Beyene and Carlan, CyberGSN: A semi-formal
language for specifying safetyc, IEEE, 2021.

[115] Bernhard, Hart, Sahu, Schöller and Canci-
mance, Risk-Based Safety Envelopes for
Autonomous Vehicles Under Perception
Uncertainty, 2021.

[116] Abdar, Pourpanah, Hussain, Rezazadegan,
Liu, Ghavamzadeh and Nahavandi, A review
of uncertainty quantification in deep learning:
Techniques, Applications and Challenges,
2021.

[117] W. Putzer, Trustworthy Autonomous/Cog-
nitive Systems: A Structured Approach, ISSN
2699-1217, 2020.

[118] Balta, Sellami, Kuhn, Schöpp, Buchinger and
Baracaldo, Accountable Federated Machine
Learning in Government: Engineering and
Management Insights, Springer, 2021.

[119] Bojarski, d. Testa, Dworakowski, Firner, Flepp,
Goyal and Zieba, „End-to-end learning for
self-driving cars,“ arXiv:1604.07316, 2016.

[120] Amini, Azari, Bhaskaran, Beauchamp, Castillo-
Rogez, Castano and Wyatt, Advancing the
scientific frontier with increasingly auto-
nomous systems, 2020.

[121] Dreossi, Ghosh, Sangiovanni-Vincentelli and
Seshia, A formalization of robustness for deep
neural networks, 2019.

[122] C. Hammerschmidt, ISO 26262 is not
perfectly designed for Artificial Intelligence,
https://www.eenewsautomotive.com/news/
iso-26262-not-perfectly-designed-artificial-
intelligence, 2019.

[123] LeCun, Bottou, Bengio and Haffner,
Gradient-based learning applied to document
recognition, IEEE, 1998.

[124] NASA Engineering and Safety Center, National
highway traffic safety administration Toyota
unintended acceleration investigation., 2011.

[125] Nguyen, Destercke and Hüllermeier, Epistemic
uncertainty sampling, Springer, 2019.

[126] Salay and Czarnecki, Using machine learning
safely in automotive software: An assessment
and adaption of software process require-
ments in ISO 26262, 2018.

[127] Seshia, Desai, Dreossi, Fremont, Ghosh,
Kim and Yue, „Formal Specification for Deep
Neural Networks,“ International Symposium
on Automated Technology for Verification
and Analysis (ATVA), pp. 20-34, 2018.

[128] Rushby, „Assurance for Increasingly Auto-
nomous Safety Critical Systems,“ 2018.

[129] T ambon, Laberge, An, Nikanjam and et.al.,
„How to Certify Machine Learning Based
Safety-critical Systems?,“ in Arxiv 2107.12045,
2021.

33

Imprint

Published by
fortiss GmbH
Guerickestraße 25
80805 München

Layout/Gestaltung
fortiss GmbH

ISSN Print
2699-1217

ISSN Online
2700-2977

2nd issue
January 2023

Find here more
fortiss White Paper

Photo credits
Title: AdobeStock 434584931
Page 4: AdobeStock 269258088
Page 17: AdobeStock 239992035
Page 27: AdobeStock 1277792077
Page 34: Fortiss GmbH @ Kathrin Kahle

Safe Intelligence — this forms the core brand of the
Fraunhofer Institute for Cognitive Systems IKS.
Connected cognitive systems drive innovation in
many sectors, for example in autonomous vehicles,
medical devices or intelligent automation within
industry. They should always take full advantage of
the potential offered by artificial intelligence, while
remaining demonstrably safe and reliable at the
same time. This is why Fraunhofer IKS researches
both artificial intelligence and software engineering —
we consider resilience and intelligence as part of the
same process.

fortiss is the Free State of Bavaria research institute
for software-intensive systems based in Munich.
The institute collaborates on research, development
and transfer projects together with universities and
technology companies in Bavaria and other parts of
Germany, as well as across Europe.

The research activities focus on state-of-the-art
methods, techniques and tools used in Software
& Systems-, AI- and IoT-Engineering and their
application with cognitive cyber-physical systems.

fortiss is legally structured as a non-profit limited
liability company (GmbH). The shareholders are
the Free State of Bavaria (majority shareholder) and
the Fraunhofer-Gesellschaft zur Förderung der
angewandten Forschung e.V.

Although this white paper was prepared with the
utmost care and diligence, inaccuracies cannot be
excluded. No guarantee is provided, and no legal
responsibility or liability is assumed for any damages
resulting from erroneous information.

fortiss GmbH
Guerickestraße 25
80805 München
Deutschland
www.fortiss.org
Tel: +49 89 3603522 0
E-Mail: info@fortiss.org

