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      » As we know,

there are known knowns.

         There are things we know

   we know.

        We also know

       there are known unknowns.

   That is to say,

      we know there are

       some things we do not know.

But there are also unknown unknowns,

             the ones we don’t know,

      we don’t know. «
Donald Rumsfeld, Feb 2002, US DoD news briefing

1 This work is funded by the Bavarian Ministry for Economic Affairs, Regional Development and Energy as part of the fortiss 
AI Center and a project to support the thematic development of the Fraunhofer Institute for Cognitive Systems. We are also  
grateful to Carmen Cârlan and Henrik Putzer for their thorough remarks and suggestions for improvement; in particular, Figure 2  
is due to Carmen.
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1. Introduction

A new generation of cyber-physical systems (CPSs) 
with cognitive capabilities is being developed for re-
al-world control applications. Examples are self-driv-
ing vehicles, flexible production plants, automated 
surgery robots, smart grids, and cognitive networks. 
These systems are artificial intelligence (AI)-based 
in that they leverage techniques from the field of 
AI to flexibly cope with imprecision, inconsistency, 
and incompleteness, to have an inherent ability to 
learn from experience, and to adapt according to 
changing and even unforeseen situations. This extra 
flexibility of AI, however, makes its behavior more 
difficult to predict, and the challenge is to construct 
AI-based systems without incurring the frailties of 
“AI-like” behavior [1].

In addition, cyber-physical AI systems usually are 
safety-critical in that they may be causing real harm 
in (and to) the real world. As a consequence, the 
central safe AI objective is to handle or even over-
come the dichotomy between safety and the large-
ly unpredictable behavior of complex AI systems.

Consider, for example, an automated emergency 
braking system for a car that continually senses the 
operational context based on machine learning 
(ML), assesses the current situation via an AI deci-
sion module based on models of the operational 
context (and itself), and initiates a maneuver for 
emergency braking by overriding the human driver, 

when necessary. The intent of this emergency 
maneuver is, of course, to prevent accidents in 
time-critical situations that the human operator may 
not be able to control anymore. The emergency 
braking maneuver itself is also safety-related, as 
wrongful execution might cause severe harm.

The safe AI challenge is not exactly new [2] and 
may well be traced back to Turing himself in the 
early 1950s. Still, it has recently become all-import-
ant because of the euphoric mood about AI, as 
the acceptance and the success of AI techniques 
for real-world applications hinge on a meaningful, 
dependable, and safe control. Ongoing discussions 
about the responsible deployment of AI in the real 
world range from human-centered social norms 
and values2 to its robust and safe realization [3] [4].

In this thought outline, however, we restrict our-
selves to the technical design and engineering prin-
ciples of safe AI systems as a necessary step for  
the responsible deployment of mission- and safety- 
critical AI systems into our very societal fabric. 
Moreover, although we are concentrating only on 
safety aspects in this thought outline, we believe 
that the suggested approach also fruitfully intersects 
with related dependability attributes of AI systems, 
such as security, privacy, inverse privacy, fairness, 
and transparency.

2 https://www.ai4europe.eu/ethics
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Figure 1 Sense-plan-act loop of a cognitive system. 

3 For our purposes, we use the terms “AI system”, “cognitive AI system”, and “cognitive system” largely interchangeably.
4 Notice, however, that this suggested separation-of-means has exceptions, such as Nvidia’s end-to-end-control for an experimental 
self-driving system [119]. 

The starting point of our considerations is cognitive 
systems, which are software-intensive technical 
systems that imitate cognitive capabilities, such as 
perception, model-building, and reasoning. More 
specifically, the basic sense-plan-act control loop 
of the cognitive AI system3 in Figure 1 is based on 
monitored observations of the operational environ-
ment (including the controlled plant), perception, 
and interacting commands from human operators. 
Functionally automated driving systems, such as 
the emergency braking example, may easily be con-
sidered instances of this sense-plan-act loop, 
where the ego car is the plant to be controlled. 

The cognitive system in Figure 1 is conceptually 
a function taking sensing inputs and generating 
corresponding output actions, which is usually also 
based on the internal state. Although this loop may 
be used as the conceptual specification of a reac-
tive CPS [5], it is also the central technical concept 
of the AI field, which is concerned principally with 
designing the internals of stream-transforming con-
trols for mapping from a stream of raw perceptual 
data to a stream of actions. 

Behavior generation for the sense-plan-act loop is 
decomposed into successive stages for situational 
awareness, followed by deliberate, goal-oriented 
planning and by execution of selected actions in 
the real world. Sensing functionalities, in particular, 
are currently often realized through data-driven 
ML methods, such as artificial neural networks 
(ANNs). Behavioral planning capabilities, on the 
other hand, are usually realized by more traditional 
software-based control methods but also through 
probabilistic and reinforcement-based synthesis 
of control strategies. This conceptual separation 
into sensing and deliberate planning is supported, 
among others, by the global workspace theory, 
which categorizes cognitive capabilities into fast 
and slow modes of operation: System 1 operates 
rapidly, intuitively, and effortlessly, whereas System 
2 requires concentration, motivation, and the appli-
cation of learned rules, and it allows us to grasp the 
right ones.4 In other words, System 1 means snap 
judgments that seduce us with the wrong answers, 
and System 2 means thinking twice [6]. 
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1. Introduction

The context model of our running example, au-
tomated emergency braking, might consist of the 
positions, bounding boxes, and motion vectors of 
surrounding environmental objects, such as cars or 
cyclists. 

The sensing stage constructs and updates faith-
ful models,5 based on perceived inputs and other 
knowledge sources, of the exogenous operating 
environment and the endogenous self. One can 
easily imagine scenarios in which failure of detec-
tion, misclassification, or imprecision in models 
causes an accident. 

The main challenge, therefore, is to provide a con-
vincing argument that an AI system is sufficiently 
safe as determined through applicable risk and  
safety analysis. As usual, this notion of sufficiently 
safe heavily depends on the specific societal con-
text and, correspondingly, acceptable risks. 

For our purposes, automated emergency braking 
(EB) is intuitively said to be safe if its activation pre-
vents, at least up to some tolerable quantity, acci-
dents in prescribed situations. Assuming we can 
identify a corresponding subset S of “known” safe 
states of the operating context, the safety envelope, 
then the safety challenge for EB reduces to verifying 
the safety invariant EB(S) ⊆ S. In this way, EB, when 
initiated in a potentially unsafe and uncontrollable 
(for the driver) state in S, produces safe control 
actions, in that the ego car is always maneuvered 
toward a safe and controllable state, possibly a fail-

safe state, and as the basis for a possible handover 
to the driver. As with most CPSs, ensuring safe 
control involves a rather complex interaction of un-
certain sensing, discrete/probabilistic computation, 
physical motion, and real-time combination with 
other systems (including humans). We are arguing 
that traditional safety engineering techniques for 
embedded systems and CPSs are, for the multitude 
of heterogeneous sources of uncertainty, not appli-
cable to learning-enabled cognitive systems, which 
are acting increasingly autonomous in open envi-
ronments. 

We identify central specification, uncertainty, as-
surance, design, analysis, and maintenance chal-
lenges for realizing this rigorous design of safe AI, 
all based on the notion of managing uncertainty to 
acceptable levels.6 An overview of these challenges 
is provided in Table 1 (p. 29) — without any claim of 
completeness. 

In addition, notice that because safe AI engineering 
is in its infancy, at times this exposition may seem to 
be rather sketchy and speculative, and clearly, many 
of our claims and hypotheses need further sub-
stantiation or disproval. In this sense, this thought 
outline should be provocative and thought-inspiring. 
It is also intended to be a living document, which 
needs to be updated and concretized as we gain 
more experience and increase our theoretical un-
derstanding of the rigorous design for safe AI — as 
the basis for the responsible and safe deployment of 
AI in our economic and societal fabric.

5 So-called digital twins.   6 In analogy to the “as low as reasonably possible” (ALARP) risk-based criterion, we might call this the “as 
certain/confident as reasonably possibly” (ACARP) principle.  
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2. Challenges

Uncertainty and Complexity 

The cognitive capabilities of CPSs are enabled 
by advances in AI, in particular, ML, as well as the 
large-scale availability of training and validation data 
through an increasing number of sensing channels 
and connectivity. As motivated above, the deploy-
ment of such systems is leading to substantial chal-
lenges in safety assurance, including existential ques-
tions, such as can AI systems ever be considered safe 
enough? We now look at some of the legitimate rea-
sons for these doubts before focusing on AI-specific 
topics in later sections. 

Previously, safety-critical electric/electronic (E/E) 
systems were assured by considering the impact of 
malfunctions caused predominantly by random hard-
ware failures or system design faults, including but 
not exclusive to software bugs. This scrutiny allowed 
for a model-based approach to understanding the 
failure modes of individual components and how 
faults in individual components propagate through a 
system, leading to hazardous actions. However, in-
troducing safety-critical cognitive systems requires a 
broader consideration of safety and potential causes 
of hazards. Many of these challenges can be related 
to the increasing complexity and uncertainty within a 
system and its environment. 

Uncertainty

A particular challenge is that an AI system contains 
a multitude of sources of entangled uncertainty. 
The inductive capability of ML for extracting models 
from data is inseparably connected with uncertainty, 
but there is also uncertainty regarding the operating 
context, there is uncertainty regarding the models of 
the operating context and the “self,” there is behav-
ioral uncertainty due to the approximate nature of 
heuristic learning algorithms, there is uncertainty due 
to probabilistic and non-deterministic components, 
there is uncertainty regarding safety hazards,7 there is 
uncertainty regarding safety envelopes in uncertain 
operating contexts, there is uncertainty in a mean-
ingful fallback to a responsible human operator and, 

finally, there is uncertainty in self-learning systems 
concerning their emergent behavior in time. Possibly 
the only thing that is certain about an AI system is 
that it is uncertain and largely unpredictable. 

As an example, let’s investigate the sources of un-
certainty of ML components, such as ANNs, in more 
detail. The input-output behavior of ANNs heavily 
relies on selecting “complete” and “correct” (with 
respect to the ground truth) sets of training and sup-
port data to faithfully specify relevant operating con-
texts (input) and their intended internal representation 
(output). Another source of uncertainty for these ML 
algorithms is the use of stochastic search heuristics, 
which may lead to incorrect recall even for inputs 
from the training data, and the largely unpredictable 
capability of generalizing from the given data points. 
Uncertainty regarding the faithfulness of the training 
data representing operating contexts and uncertainty 
regarding the correctness and generalizability of 
training also combine in a, well, uncertain manner. 
The consequences of these accumulated uncertain-
ties are profound. Particularly, ANNs are usually not 
robust with unseen inputs, as there is also quite some 
uncertainty in their behavior for even small input 
changes.8 

Adequate approaches are needed to measure the 
(un)certainty in the input-output behavior of an ANN 
with respect to the real world. For example, how 
certain are we that a given ANN correctly classifies 
certain classes of homeomorphic images of a “cat”? 
How certain should an ego vehicle be that there will 
be no surprises, such as undetected or misclassified 
vehicles, before initiating an emergency brake? Based 
on these certainty measures, internal models of the 
operating context should be equipped with confi-
dence levels or, more generally, confidence intervals 
or distributions. The EB assistant, for example, may, 
as the basis for selecting appropriate action, assign 
confidence levels for the position and mobility vec-
tors of all relevant objects, possibly together with a 
level of confidence that objects have been correctly 
identified and classified and that no “ghost” objects 
are in the context model.

7 For instance, dynamic hazards, such as the sudden occurrence of objects on a road, which may lead to catastrophic failure. 
8 For instance, “one-pixel attacks” for fooling deep neural networks [22]. 
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2. Challenges
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Figure 2 Complexity-aware systems safety engineering. 

Complexity 

We refer to complexity in terms of systems theory, 
where a system is defined as complex if the inter- 
action between its parts leads to behavior that could 
not be predicted by considering the individual parts 
and their interactions alone. Complexity can mani- 
fest itself within different levels of a system: 

   Increasing complexity within the E/E architecture. 
This complexity is caused by not only the in-
creasing number of technical components within 
a system but also the heterogeneity and tech-
nical implementation of these components, the 
use of components and software of unknown 
pedigree, and changes in the system after release 
due to software updates or the integration of 
additional services (e.g., via cloud connectivity). 
One impact of system complexity is nonlinearity, 
mode transitions, and tipping points where the 
system may respond in unpredictable ways  
depending on its current state or context. 

  Complex behavioral interactions between  
systems, self-organization, and ad hoc systems- 
of-systems. Interactions between a system and 
its environment may be difficult to predict, par-
ticularly when human agents are involved in the 
interactions. Consider the range of behaviors  
that must be considered by a self-driving vehicle 
navigating heavy traffic consisting of human- 
driven vehicles and automated vehicles from 
other manufacturers acting according to unhar-
monized norms of behavior. Such interactions 
may lead to ad hoc systems-of-systems forming, 

over which individual manufacturers have little or 
no control and thus call into question whether 
the system scope under consideration for safety 
is appropriate and what an appropriate scope of 
analysis should be.

Increasing complexity increases the difficulty of deter-
mining the (potential) causes of failures in the system 
and effective risk control measures. The impact of 
complexity in the systems and their environment on 
our ability to deliver convincing arguments for safety 
has been discussed in more detail within the scope of 
automated driving [7]. The concept of uncertainty is 
closely related to the topic of increasing complexity. 
Again, uncertainty can manifest itself in several ways 
that make the safety assurance of safety-critical cogni-
tive systems more challenging.

1   Scope and unpredictability of the operational 
domain. Many highly automated CPSs can be 
said to operate within an open context, that is, an 
environment that cannot be fully specified in a 
way that desirable system behavior can be defined 
for each possible set of conditions. Such environ-
ments are typified by the presence of edge cases 
or “black swans,” corresponding to previously un-
known or even unknowable conditions. Further-
more, the operational domain can shift over time, 
leading to new sets of conditions that were ne-
glected during design. This neglect inevitably leads 
to insufficiencies in the resulting specification of the 
system under development, which are referred to 
as “ontological” uncertainties [8].
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2   Inaccuracies and noise in sensors and signal 
processing. This complex, unpredictable envi-
ronment is measured using a combination of 
inevitably imperfect sensors providing a noisy, 
incomplete view of the environment. In addition 
to general inaccuracies in the measurements, 
such sensors themselves can be “fooled” by 
physical properties of the environment, such as 
a lens flare distorting a video image or manhole 
covers leading to spurious radar reflections.

3   Uncertainties in the perception and decision- 
making functions. The complex, incomplete, 
and noisy inputs to the system are often the 
motivation for using AI and ML techniques in the 
first place. However, as we will explain in further 
chapters, these algorithms themselves intro- 
duce additional uncertainty within the system 
and rarely deliver precise results. Therefore, in 
an attempt to solve the problem of uncertainties 
in the inputs to the system, yet another class of 
uncertainties is introduced.

The complexity of the system and associated uncer-
tainties lead to semantic gaps [9], which are defined 
as a discrepancy between the intended and specified 
functionality and can be caused by the complexity 
and unpredictability of the operational domain, the 
complexity and unpredictability of the system itself, 
as well as the increasing transfer of decision func-
tions to the system, which would otherwise require 
non-specifiable properties, such as human intuition 
or ethical judgment. These semantic gaps lead to 
insufficiencies in the definition of appropriate safety 
acceptance criteria as well as a lack of confidence 
that statements made in a safety assurance case  
reflect the actually achieved safety of the system. 

The above discourse illustrates the manifold chal-
lenges we face when developing safe cognitive sys-
tems. It also allows us to better delimit discussions 
around “safe AI.” To derive an adequate set of safety 
assurance methods for such systems, we must be 
clear about which problems we are addressing. 
These problems can be roughly separated into the 
following categories:

1   Safety challenges caused by the inherent  
difficulty of the task to be solved. This category 
includes the systematic complexity of the func-
tion to be implemented using AI components 
based on the complexity and unpredictability of 
the input domain and the resulting impact on 

semantic gaps, which may restrict our ability to 
define an adequate specification of the required 
performance of the AI-based function. These 
factors are independent of the actual AI or ML 
techniques used and are better referred to as 
cognitive system safety engineering activities. 
These activities include the application of suitable 
system safety assurance methods, including the 
definition of socially and legally tolerable risk 
acceptance criteria, as the development of an 
overall system design that is resilient to previously 
unknown or changing properties of the environ-
ment. A “complexity-aware” system safety engi-
neering approach is summarized in Figure 2.

2   Safety challenges caused by the use of specific 
AI/ML techniques. This category includes perfor-
mance limitations and properties of the specific 
AI/ML techniques used. For example, statistical 
modeling and linear regression-based models 
exhibit different sets of properties related to the 
explainability and predictability of their results 
as deep neural networks but may differ greatly 
regarding their accuracy for certain tasks. An 
example of how the properties of a specific ML 
technique can support a safety assurance case 
can be found in [10]. The AI-technology specific 
challenges therefore involve ensuring that the 
specific performance requirements allocated to 
the AI-based function within the system context 
are fulfilled with a level of confidence commen-
surate to the overall level of system risk.

When discussing “safe AI” and the associated chal-
lenges, we should therefore be clear about which 
scope we are referring to. Are we referring to the 
safety of cognitive systems operating within an 
open context or to whether specific properties of 
a trained model remain within certain bounds of 
uncertainty for a given set of inputs? These two 
topics are closely interrelated. For example, when 
applying ML techniques that deliver a high level of 
prediction uncertainty or sensitivity to small changes 
in the inputs, such as deep neural networks, the 
cognitive systems engineering task must ensure 
that tolerances on uncertainties within the trained 
model must be carefully defined and aligned with 
other system components.
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2. Challenges

Safety Engineering 

Traditional safety engineering ultimately is based on 
fallback mechanisms to a responsible human oper-
ator, the deterministic behavior of a cyber-physical 
system as the basis for its testability, and well-defined 
operating contexts. In addition, current safety certifi-
cation regimes require correct and complete specifi-
cations before operation. These basic assumptions  
of safety engineering no longer pertain to AI systems 
for the following reasons: 

1   With increased autonomy, a fallback mechanism 
to a human is often not possible anymore. In-
deed, the EB system needs to perform without 
any human intervention, as the required reaction 
times are well below the capabilities of human 
beings.

2   AI systems make their own knowledge-based 
judgments and decisions. While added flexibility, 
resilience, elasticity, and robustness of cognitive 
AI systems are clearly important, the gains in 
these dimensions come at the loss of testability 
due to the admittance of nondeterminism.9 This 
disadvantage is costly because systematic test-
ing and simulation are still the single most used 
technique for verifying the correct functioning of 
software-intensive systems.

3   AI systems need to cope with operating environ-
ments in which comprehensive monitoring and 
controlling is impossible and in which unpredict-
able events may occur. In fact, AI systems are 
mainly used for situations where the full details 
of the operating context cannot be known in 
advance. Risk estimation is therefore difficult to 
perform for AI systems using conventional tech-
niques.

For all these reasons, well-established and success-
ful safety standards for software-intensive systems, 
including DO 178C in the aerospace industry and 
ISO 26262 in the automotive industry, cannot read-
ily be applied to AI systems. Indeed, these safety 
standards barely heed autonomy and the particu-
larly advanced software technologies for system 
autonomy [11]. 

Many industrial initiatives for development are in 
progress, such as lower levels of automated driv-
ing10 and certified AI algorithms in the medical 
domain.11 These endeavors, however, are incom-

plete in that they are based on prescriptive safety 
standards.12 However, we still need to determine 
adequate methodologies and end-to-end verifica-
tion technology to assure safe autonomy. In addi-
tion, we need to gain more practical experience 
with these approaches before prescribing them as 
“good” or even “best” practices in industrial stan-
dards. Current safety engineering standards are also 
based on the idea that the correct behavior must be 
completely specified and verified before operation. 
It is therefore unclear if and how these safety stan-
dards may apply to learning-enabled systems, which 
are continuously self-adapting and optimizing their 
behavior to ever-changing contextual conditions 
and demands, based on their experience in the field. 

If the current safety engineering methodology is not 
directly applicable to AI systems, then we might ask 
ourselves if we can at least reduce the problems 
of safe and learning-enabled control on a case-by-
case basis, including the following examples:

   Depending on the application context, safety 
engineers can restrict AI-based functionality with 
the intent of increasing controllability or de-
creasing severity/exposure, thereby decreasing 
associated safety risks. 

   Uncertainty due to open-ended operating con-
texts and the safe control thereof is dramatically 
reduced in current automotive practice by col-
lecting all types of possible driving scenarios 
using real and virtualized global ecosystems of 
vehicles.13 This approach basically tries to close 
off the set of possible driving scenarios as the 
basis for constructing the equivalent of a “digital 
rail.” Because of the many possible anomalies 
(“black swans”),14 however, this approach is rath-
er resource-intensive, and it is unclear how to 
determine that enough scenarios have been 
collected to sufficiently cover the space of all 
driving scenarios. 

   AI-based functionality is complemented by a 
safe control channel, thereby effectively com-
bining the intended performance of AI-based 
systems with the safety of more traditional 
control.15 The crucial element in this safety ar-
chitecture is a switch between the performant 
AI-based channel and the safe channel, which 
is based on runtime monitoring of crucial safety 
specifications. A pervasive runtime monitor, for 
example, checks that the proposed action of the 
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9 A NASA study of a software-based control of vehicle acceleration, for example, revealed, among other things, potential race condi-
tions in sensor readings due to asynchronous access by a multiplicity of threads. This study concluded that the software was “untest-
able”, preventing the possibility of eliminating unsafe control actions [124].   10 Safety first guidance for potential methods and consid-
erations with the intention of developing safe L3-L4 automated driving functionality, including an ANN [105].   11 https://www.fda.gov/
medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices#resources 
12  “If you do … then the system is safe.”     13 For example, https://www.pegasusprojekt.de/en/home.     14 A well-known example is 
the fatal crash of a car in autonomous mode that resulted from a very rare four-factor combination of a white truck against a bright-
ly lit sky, along with the truck height and angle versus the car (https://www.tesla.com/blog/tragicloss), (https://www.ntsb.gov/news/
press-releases/Pages/PR20170912.aspx).      15  This combination is sometimes called a “Simplex” architecture.      16  The applicability 
and limits of prescriptive safety standards to autonomous AI systems are also discussed in [126].   17 See also the Subsection entitled  
Assurance-based Uncertainty Estimat.      18  See, for example, [129] for a survey of the safety certification of systems with learning- 
enabled components. 

EB yields safe behavior. This pervasive run- 
time monitor, together with the switching logic 
between the two channels, is developed with 
traditional safety engineering methods, thereby 
effectively removing the AI component from a 
safety-critical path. 

  An engineer may also decide to discontinue 
initial AI-based proof-of-concepts by reverting to 
well-understood control techniques altogether, 
for example, if an end-to-end safety concept 
for a given AI-based functionality is too costly 
or not possible and if a sufficiently performant 
and safe system may be achieved by more tra-
ditional means. The underlying phenomenon of 
technical debt for data-driven systems in real-life 
engineering has already been described [12].

Based on these types of engineering design deci-
sions for reducing the safety relevance and increas-
ing the determinacy of AI systems using traditional 
prescriptive safety engineering techniques for AI 
may sometimes also be possible. However, this 
reductionist approach is restricted to a rather small 
class of functionally automated systems with added 
machine learning-based capabilities, which do not 
adequately support the key concepts of AI systems, 
namely, autonomy and self-learning. Methods for 
reducing safe AI problems to the currently prevailing 
prescriptive safety engineering standards therefore 
are not future proof,16 because prescribed and fixed 
verification and validation process activities, criteria, 
and metrics do not work well for assuring the safety 
of AI systems [13]. 

Overarching properties [14] have recently been pro-
posed as a product-based alternative to prescriptive 
safety engineering standards such as DO 178C. 

Informally, a system is safe for operation if and only 
if the CIA conditions hold:

•  the system does what it should do under fore-
seeable operating conditions (Correctness);

•  what the system should do is properly captured 
(Intent); and

•  the system does not cause unacceptable harm 
(Acceptability).

An assessment of whether a system possesses 
these properties might be based on an explicit as-
surance case.17 Overarching properties are therefore 
flexible enough to be adapted to developing a jus-
tified belief of system safety with learning-enabled 
components. Currently, however, the overarching 
CIA properties do not seem to have been adopted 
for safety certification on a larger scale. 

Taken together, traditional safety engineering is 
reaching a turning point, moving from determinis-
tic, non-evolving systems operating in well-defined 
contexts to self-adaptive and self-learning systems 
that are acting increasingly autonomous and in 
largely unpredictable operating contexts. However, 
we currently do not have an adequate safety en-
gineering framework for designing this upcoming 
generation of safety-related AI systems.18

In the following section, we therefore outline a nov-
el approach to safe AI engineering. This approach 
is based on uncertainty quantification for the multi-
tude of sources of uncertainties in AI systems. 

The overarching goal of managing uncertainties 
is to minimize uncertainty in the system behavior, 
thereby increasing confidence up to tolerable levels 
in the safe behavior of the AI system. 
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The underlying idea is to generalize the notion of 
determinacy in traditional safety engineering to un-
certainty. As a special case, if some system behaves 
with no uncertainty, then it is fully predictable and 
deterministic. Deterministic parts of an AI system 
can (and probably should) therefore still be de-
veloped with well-proven design and verification 
techniques for establishing correctness and possible 
perfection.

Instead of fallback to responsible (human) opera-
tors, uncertainty measures are used by autonomous 
control strategies to minimize surprises and safely 
explore largely unknown territory. The EB assis-
tant, for example, might be rather uncertain about 
the precise location of some relevant car, and it 
therefore initiates additional perceptive capabilities 
with the intent of decreasing uncertainty, thereby 
increasing its confidence, in the location of the re-
spective car to a sufficient level, as the basis for de-
ciding on a safe sequence of EB actions. Moreover, 
some indirect cues [15] cause the system to hypoth-
esize the presence of a relevant car, which needs to 
be confirmed by additional actions before initiating 
emergency breaking. These examples demonstrate 
that uncertainty is not only a design but also an es-
sential runtime artifact for the situational generation 
of safe control behavior.

Uncertainties in the proposed engineering frame-
work are explicitly managed through safety cases. 
These structured arguments are supported by a 

2. Challenges

body of evidence that provides a compelling, com-
prehensible, and valid case that a system is safe for 
a given application and operating environment.19 
In contrast to largely process-based traditional pre-
scriptive approaches, a safety argument based on 
safety cases is largely product-based, as it involves 
presenting evidence that the actually developed 
system is safe, as opposed to merely showing that it 
was developed using normatively prescribed “good” 
practice. Recent quantitative extensions to safety 
and assurance cases provide the basis for assigning 
and combining uncertainties for the central ingre-
dients, such as evidence, arguments, assumptions, 
and conclusions. 

Figure 3, for example, illustrates the top-level plan 
for constructing a safety case for an autonomous 
GNC,20 which is built upon a traditional 3-level  
autonomous architecture. The modular construc-
tion of this safety case is based, among others, on 
evidence from traditional verification of planning  
components, verification of the correctness or quasi- 
predictability of neural network components for 
perceptive tasks, and runtime monitoring for central 
safety properties. This GNC also includes an FDIR21 
component for detecting and recovering from 
unforeseen and potentially hazardous events. The 
overall goal is to develop an autonomous space-
craft, say, for landing on an asteroid, together with 
a complete safety case. In addition, the safety case 
is also used to generate safe landing behavior and 
safely handle unforeseeable events.
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19 Def Stan 00-56 Issue 3, Safety Management Requirements for Defense Systems, Ministry of Defense, 2007.   20 Guidance, Naviga-
tion, and Control.   21 Failure Detection, Isolation, and Recovery

Figure 3 Safety case from a 3-layer architecture of a cognitive system. 
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3. Specification

In the first step, we need to express in precise terms 
when an AI system may be considered safe. This 
step sounds deceptively easy because data-driven 
AI is particularly successful in application contexts in 
which obtaining concise specifications (say, transla-
tion of natural language) is difficult, if not impossible. 

In addition, the operating contexts of AI systems 
typically are complex, uncertain, and largely un-
predictable. Safety hazards are subject to change 
during operation, and the presence of human 
operators and their interaction with the sense-plan-
act control loop further complicates matters in that 
even well-intended human interaction may lead to 
unsafe behavior. In summary, the adaptive, flexible, 
and context-sensitive behavior of AI systems caus-
es unpredictability and emergent unsafe behavior, 
which was not necessarily specified, intended, or 
consciously implemented during system design. 

In the following section, we distinguish between the 
safety specifications of AI systems and the derived 
specifications of the learning-enabled components 
of these systems. In addition, we discuss ways to sys-
tematically derive requirements for individual compo-
nents of a system from overall safety requirements.

System Safety Specification 

The overall system’s safety specification is often 
described in terms of safety envelopes. These en-
velopes may be considered an underapproximation 
of the states (or scenarios) of possible operating 
contexts that are sufficiently safe.22 In a slightly more 
general setting, we also quantify the uncertainty of 
environment states. 

A common approach for specifying safety enve-
lopes is based on maximizing under approximations, 
thereby also maximizing the number of known safe 
behaviors. In other words, the operating context is 
partitioned into the known safe (the safety enve-
lope), the known unsafe, the unknown safe, and 
the unknown unsafe, and the goal is to maximize 
the known safe areas by minimizing the known 
unsafe areas and discovering as many new unsafe 
scenarios as possible for a given level of effort [16].23 
In addition, safety envelopes must be continually 
adapted to ever-changing operating contexts, safety 
hazards, and safety requirements. 

The safety objective of an automated EB system, for 
example, is to maintain a minimum safe distance 

between the ego car and environmental objects. 
More generally, the responsibility-sensitive safety 
(RSS) model offers provable safety for vehicle be-
haviors, such as the minimum safe following dis-
tance [17]. 

Safety envelopes such as RSS have also been ex-
tended to address worst-case variability and un-
certainty [18]. Safety envelopes usually are highly 
nonlinear and context dependent, as is the case of 
Kamm’s friction ellipses. 

In these cases, ML techniques based on minor 
component analysis are promising for synthesizing 
safety envelopes from safe behaviors [19]. These 
techniques open the possibility of self-learning and 
safe maintenance of safety envelopes through cau-
tious24 and safe exploration. 

We still have very little knowledge on how to sys-
tematically construct safety envelopes. So the chal-
lenge is to construct and maintain safety envelopes 
that are known safe states of the operational con-
text and to maximize the safety envelope for a given 
level of effort. The safety of certain states contains 
uncertainty. 

Operational contexts, system behavior, and the 
notion of acceptable risk are constantly evolving. 
Therefore, safety envelopes must be continuously 
adapted to these ever-changing conditions and re-
quirements. Depending on the degree of autonomy, 
such AI systems need to self-maintain correspond-
ing safety envelopes, possibly including online risk 
analysis.

Component Safety Specifications 

The behavior of ML components is specified using 
data. In the supervised learning of ANNs, for example, 
a set of interpolation points is used to specify the in-
put-output behavior of the intended function. Inputs 
may be observations of the operational context, and 
outputs are corresponding context models. 

The central challenge for data-driven requirements 
engineering is to represent the operational context 
using selected interpolation points as faithfully as 
possible for a given level of effort. This task can be 
accomplished by sampling input scenarios from the 
(assumed) distribution of the operational context or 
by discretizing the operational context according 
to n features into 2ⁿ cells and sampling inputs from 
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22 According to a risk and safety analysis of the system under consideration.   23 A newer version is available at https://www.beuth.de/
de/norm-entwurf/iso-dis-21448/335355102.   24 Cautious behavior might be realized using minimizing surprises, which may be realized 
by minimizing free energy or maximizing predictive information.   25 Notice that the precondition x ∈ S is in the language of environment 
inputs, whereas the postcondition is in the language of the context models.

these cells. Both approaches are prohibitively ex-
pensive for many interesting operational contexts. 
A series of polynomial-time approximations, for ex-
ample, has been developed to make feature-based 
discretization feasible in practical applications [20], 
and clustering and unsupervised learning tech-
niques are used to identify a finite number of rep-
resentative classes of scenarios [21]. Also of interest 
would be constructing sets of interpolation points 
that, when used to train a perception ANN, are suffi-
cient for establishing the invariance of the AI system 
with respect to a given safety envelope. 

Given a set of hopefully representative interpolation 
points and an initial neural network architecture, 
an ANN is constructed by heuristically searching, 
usually based on hill-climbing, for a configuration 
to minimize the error between actual and specified 
outputs. This type of heuristic search might get 
stuck in local minima, thereby leading to subopti-
mal solutions, or it might not terminate. Moreover, 
the resulting ANN might be incorrect in that its 
input-output behavior does not coincide with the 
specifying interpolation points, and the ANN might 
not be resilient in that slight variations of inputs lead 
to completely different output behavior, because 
many ANNs tend to “overfit” without further pre-
cautions in training. Consequently, ANN output can 
often be altered by adding relatively small perturba-
tions to the input vector [22].

These types of uncertainties motivate the need 
for requirements of ANNs beyond data, such as 
resilience. For a fixed input x and a metric d on the 
input space, an ANN is locally ε-resilient if ANN(x‘) is 
equal to or similar to the output ANN(x) for all small 
perturbations x‘ with d(x, x‘) < ε; if the ANN is locally 
ε-resilient for all possible inputs, then it is also glob-
ally ε-resilient [23] [24]. The inherent uncertainty of 
ANN input-output behavior is considerably reduced 
by establishing strong resilience properties.

The additional desired behavior of perception 
components usually comes with their intended 
functionnality. For example, an object classifier may 
be expected to correctly classify certain affine or 

homeomorphic images of training inputs, such as 
stretching, squeezing, rotational, and translational 
images. Sequences of context models for modeling 
traffic flow, for example, should also obey the fun-
damental laws of physics. 

The challenge is to identify and maintain desired 
properties and potential defects of ANN-based 
perception components, which lead to undesired 
behavior. Moreover, a much better understanding 
of the contribution of these properties and defects 
in the overall system safety is needed. This type of 
knowledge should enable the development engi-
neer, for example, to compute precise bounds on 
the required resilience of the perception ANN for 
arguing overall system safety.

Deriving Component Safety Specifications

Given a safety specification S of the AI system de-
picted in Figure 1, we derive the corresponding 
safety constraints on the possible behavior of the 
ANN-based perception component. The control, 
consisting of the deliberation and the execution 
units, needs to ensure that the output (the changed 
environment) is safe, that is, in S. In an engineered 
system, we can compute the weakest precondi-
tion, say, wp(controler)(S), which now serves as the 
postcondition for the perception unit. Assuming 
that the input x to the perception unit is in S, that is, 
that this state is safe, we obtain a pre/postcondition 
specification 

(  x ∈ S) perception (x) ∈ wp(controler)(S)

of the perception unit that is sufficient to establish 
the safety of the overall AI system loop.25 Adequate 
domain abstractions and corresponding abstract 
interpretation techniques are needed to make this 
approach feasible.

Indeed, researchers have taken the first step in this 
direction and identified special cases of pre/post-
condition pairs for neural networks [25] [26]. Logical 
specifications θ may also be incorporated into the 
training purpose of an ANN by constructing, for  
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example, a corresponding differentiable loss func-
tion L(θ), such that x (logically) satisfies θ whenever 
L(θ)(x) = 0 or by incorporating constraints such that 
θ will be satisfied by the model even on unseen data 
[27]. More generally, in the case of mutual depend-
encies between the perception unit and the con-
troller for realizing active perception or in the case 
of learning-enabled controllers, sufficiently strong 
preconditions for these two components can be 
synthesized based on, for example, a combination 
of traditional assume-guarantee reasoning and ML 
[28] [29]. Instead of using sets of states as properties 
and state transformers between these properties, 
one can also build uncertainty directly into the 
computational model of an AI system. In these cas-
es, the behavior of AI systems may, at least partially 
and when necessary, be based on probabilistic sets, 
where states belong to a set with a certain proba-
bility only, and probabilistic transformers between 
probabilistic sets. The classical notions of weakest 
precondition and strongest postcondition general-
ize to probabilistic set transformers. 

Whenever a few interactions occur between the 
perception and the control unit, as is expected in 
many real-time systems, the weakest precondition 
approach above is applied to the unrolled system. 
These types of pre/postcondition specifications for 
the perception unit are the basis for largely decou-
pling perception development from the control 
unit. For example, as long as the controller adapts 
in time such that wp(controller′)(S) ⊆ wp(controller)
(S), where controller’ is the updated controller, 
component-wise safety analyses will still compose 
to a system-level safety argument; otherwise, the 
challenge is to identify corresponding minimal sets 
of changes for the perception unit and its analysis. 
The perception specification can also be used as 
additional input to train the perception an ANN or as 
the basis for verifying this component, for example, 
for systematically deriving test cases. These initial 
ideas for systematically deriving component safety, 
particularly for learning-enabled components from 
overall systems safety requirements, clearly need to 
be further developed and stress-tested on challeng-
ing real-world AI systems.

Component Safety Verification 

Furthermore, one may compute the weakest pre-
condition of the perception ANN. For example, 
computing the weakest preconditions of ReLu net-
works with their rather simple node activation func-
tions is, in principle, straightforward [30]. Now, given 
a safety envelope S, the safety verification problem for 
an AI system (perception; control) may be stated as

wp(perception)(wp(controller)(S)) ⊆ S

This fundamental safety invariant immediately reduces 
to the local constraint for the perception unit: 

perception(S) ⊆ wp(controller)(S)

These types of constraints are statically analyzed 
based on symbolic verification techniques [31] used 
for test case generation or dynamically checked 
using runtime verification (see Section 5).

In addition, the perception component may now be 
trained with the additional knowledge that its precondi-
tion is S and the postcondition is wp(controller)(S).  
Logical constraints can also be interpreted in a more 
general quantitative logic to obtain a differentiable 
objective function as needed for hill-climbing-based 
training. Such quantitative interpretation may, for 
instance, be based on probabilistic sets and probabil-
istic transformers for modeling. 

If we manage to train a “correct” ANN, then we ob-
tain a safety-by-design method for constructing safe 
AI systems. Indeed, as mentioned above, an ANN 
may be trained to obey some given logical safety 
property by constructing a corresponding differenti-
able loss function for the satisfiability of this formula. 
Nonetheless, the safe behavior and input-output 
still contain uncertainty due to the incorrectness of 
underlying learning algorithms. A new generation of 
knowledge-enhanced ML [32] techniques is tackling 
such real-world challenges for ML algorithms.

3. Specification
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Learning in the sense of replacing specific observa-
tions with general models is an inductive process. 
Such models are never provably correct but only 
hypothetical and therefore uncertain, and the same 
holds for the predictions produced by a model. 

In addition to the uncertainty inherent in inductive in-
ference, other sources of uncertainty exist, including 
incorrect model assumptions and noisy or imprecise 
data. Correspondingly, one usually distinguishes be-
tween aleatoric and epistemic sources of uncertainty 
[33] [34]. Whereas aleatoric26 uncertainty refers to the 
variability in the outcome of an experiment that is 
due to inherently random effects, epistemic27 uncer-
tainty refers to uncertainty caused by a lack of knowl-
edge. In other words, epistemic uncertainty refers to 
the ignorance of an actor, and hence to its epistemic 
state, and can in principle therefore be reduced with 
additional information. Various approaches toward 
robustness are taken based on reducing uncertainty 
[33]. Uncertainty reduction also plays a key role in 
active learning [35] and learning algorithms such as 
decision tree induction [36]. 

Indeed, sources of uncertainty in the design of safe 
AI systems are multitudinous [37]. There is, among 
other things, uncertainty about the operational con-
text, about hazards and risks, about the correctness 
and generalizability of learning-enabled components, 
about safety envelopes, there is uncertainty due to 
noise in sensing, controller uncertainty due to non-
determinism and/or probabilistic control algorithms, 
uncertainty on the internal models of the controller, 
and, last but not least, uncertainty about the actions 
of human operators and their possible interaction 
with the AI-based control system. 

Rigorous approaches for safe AI need to manage 
the multitude and heterogeneity of sources of  
uncertainty. We therefore propose an engineering 
approach based on the principle of uncertainty  
reduction, thereby increasing the predictability (up 
to tolerable quantities) of the AI system. The crucial 
steps are as follows: 

  Identify all28 relevant sources of uncertainty. 

  Quantify and estimate the uncertainty,29 including 
the certainty thereof. 

  Forward and inverse propagation of uncertainty 
along chains30 of computation. 

  Modular composition of uncertainties along the 
architectural decomposition31 of the AI system. 

  Design operators to mitigate the overall system 
uncertainty below a certain level as determined 
by a risk and safety analysis,32 including

 •  a combination of offline and online accumula-
tion of relevant knowledge for managing epis-
temic sources of uncertainty, and

 •  incremental change in uncertainty reasoning 
due to self-learning or even self-modification 
capabilities of an AI system.

Clearly, these tasks for managing the multitude of 
heterogeneous sources of the uncertainty in AI sys-
tems are fundamental in any rigorous and transpar-
ent engineering process. We currently do not have, 
however, a comprehensive set of methods and 
tools for supporting application engineers in man-
aging uncertainties.

4. Uncertainty Quantification

26 AKA statistical, experimental, or “known unknown”.   27 AKA systematic, structural, or “unknown unknown”.   28 In a defeasible 
manner.   29 Uncertainty quantification is the science of quantitative characterization and reduction of uncertainties in computational 
and real-world applications. Among others, it tries to determine how likely certain outcomes are if some aspects of a system are not 
exactly known.   30 Including recursive chains.   31 Both horizontal and vertical.   32 For example, less than one hazardous behavior for 
109 operational time.   33 Operational design domains may be specified following standards such as PAS 1883 (https://www.bsigroup.
com/en-GB/CAV/pas-1883).   34 Again, the old saying applies: All models are wrong, but some might be useful.
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Environmental Uncertainty 

The operational environment of AI systems can be 
rather complex,33 with considerable uncertainty even 
about the number and type of objects and agents, 
human and robotic, that are in the environment, let 
alone about their intentions, behaviors, and strategies 
[38]. An AI system therefore must act without relying 
on a correct and complete model of the operating 
environment. The models at hand usually do not 
faithfully reflect the real-world operational context,34 
and it is simply not possible, and possibly not even 
desirable, to model everything. To address modeling 
errors, AI systems may make distributional assump-
tions about the operational environment. However, 
exactly ascertaining the underlying distribution can 
be difficult. 

As an alternative to explicitly modeling the opera-
tional environment, this environment is commonly 
specified using a set of scenarios, which should be 
sampled with respect to the underlying distribution 
of the environment. These scenarios are analyzed 
and labeled with their respective interpretation of the 
context model to obtain training data for an ANN-
based perception unit. Selecting “good” scenarios is 
a major challenge. These scenarios should signifi-
cantly reduce the difference between the assumed, 
underlying distribution of the operating environment 
and the distribution of the selected training set. For 
example, collecting scenarios by driving around for 
five hours on a highway in Alaska does not contrib-
ute as well to the approximation of real-world driving 
as collecting driving scenarios at the Gate of India. 
Another concern is evolving operating scenarios and 
how to correspondingly adapt the set of specifying 
scenarios. 

The challenge is to quantify and measure uncer-
tainty between the operating environment and its 
specifying set of scenarios, identify “good” scenarios 
for reducing uncertainty to tolerable levels, provide 
sufficient conditions on the uncertainty of scenario 
sets for overall system safety (up to quantifiable tol-
erances as identified through safety risk assessment), 
and adapt the specifying scenario set to the evolving 
operating environment.

Behavioral Uncertainty 

We restrict our considerations on learning-enabled 
components to a widely popular class of ANNs. This 
ANN is a deterministic function. Because of nonlin-

ear activation functions, however, its input-output 
behavior contains considerable uncertainty: Training 
instances may or may not be represented correctly 
by the ANN, and it is usually unclear how, and how 
much, the input-output behavior of an ANN general-
izes from training instances. The success of one-pixel 
attacks serves as a reminder of the limited gener-
alizability and resilience of some machine-learned 
models. Establishing the resilience [23] or invariance 
properties — for example, invariance with respect to 
certain affine or homeomorphic transformations — 
of an ANN is an important means of reducing uncer-
tainty in the input-output behavior. Some uncertainty 
about outcomes, however, remains. A systematic 
framework for analyzing different sources of uncer-
tainty for ANNs is described in [39].

Measuring behavioral uncertainty. Entropy may be 
used to quantify the uncertainty of a neural network. 
Indeed, under mild assumptions on uncertainty, 
entropy is the only possible definition of uncertainty 
[40], at least in its aleatoric interpretation. Behavioral 
uncertainty has a multitude of indicators. The work 
in [41], for example, proposes using the distance 
between neuron activations observed during trai-
ning and the activation pattern for the current input 
to estimate input-output behavior uncertainty. 

Training-based estimation of behavioral uncertainty. 
Ensembles of neural networks, for example, esti-
mate predictive uncertainty by training a certain 
number of NNs from different initializations and 
sometimes on differing versions of the dataset. The 
variance in the ensemble’s predictions is interpreted 
as its epistemic uncertainty. Instances of ensemble 
learning techniques, such as Bayesian neural net-
works (BNNs) [42], measure epistemic uncertainty 
P(θ|D) on model parameters θ and the aleatoric 
uncertainty P(Y|X, θ). 

In fact, the predicted uncertainty of BNNs is often 
more consistent with observed errors compared to 
classical neural networks. The out-of-training dis-
tribution points of a BNN lead to high epistemic 
uncertainty. The uncertainty P(θ|D) can be reduced 
with more data. BNNs are also an interesting ap-
proach to active learning, as one can interpret the 
model predictions and see if, for a given input, diffe-
rent probable parametrizations lead to different pre-
dictions. In the latter case, the labeling of this input 
will effectively reduce the epistemic uncertainty.
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Uncertainty Propagation 

What we really should care about is not freedom 
from faults but an absence of failure [43]. Particularly, 
if a perception unit fails to meet its safety specifica-
tion, then we call this unit faulty, and if the overall 
cognitive system loop fails to act safely, then a sys-
tem failure occurs. Using the corresponding random 
variables Faulty and Failure, we are interested in the 
probability that the system is safe, that is, P(not Failure); 
using Bayes’ rule, we obtain:

P(Failure | Faulty) ∗ P(Faulty) = P(Faulty | Failure) ∗ P(Failure)

Provably distributions [44] are used to estimate the 
posterior probability P(Failure | Faulty) of faulty be-
haviors leading to safety violations.35 The probability 
P(Faulty) that the perception unit is faulty is approx-
imated, for instance, using a training-based estimate 
of behavioral uncertainty (as described above) or 
from an assurance-based estimate of uncertainty (as 
described below). Now, assuming that all but the 
perception unit are possibly perfect and that the 
faulty perception unit is the only possible cause  
of failure, P(Faulty|Failure) = 1. Consequently, we 
can estimate P(not Failure) = 1 − P(Failure) using 
Bayesian inference. 

This short exposition of the propagation of compo-
nent faults to system safety failures is intended to 
demonstrate a possible style of Bayesian inference for 
establishing safety results. The underlying methodolo-
gy, however, should also be applicable for more gen-
eral mutually recursive system architectures.

Assurance-based Uncertainty Estimation

The goal of rigorous design is to gain sufficient  
confidence that failures, in our case safety violations, 
are very rare up to tolerable quantities. However, 
sufficient confidence cannot be constructed by 
considering failures only. 

Instead, assurance constructs a convincing case that 
failures are rare. One widely quoted definition of the 
corresponding notion of a safety case comes from 
[45]: “A safety case is a structured argument, support-
ed by a body of evidence that provides a compelling, 
comprehensible, and valid case that a system is safe 
for a given application in a given operating environ-
ment.” An assurance case is simply the generalization 
of a safety case to properties other than safety. 
An assurance case, therefore, is a comprehensive, 

defensible, and valid justification of the safety of a 
system for a given application in a defined operat-
ing context. It is based on a structured argument of 
safety considerations across the system lifecycle, 
which can assist in convincing the various stake-
holders that the system is acceptably safe. 

The purpose is, broadly, to demonstrate that the 
safety-related risks associated with specific system 
concerns36 have been identified, are well-under-
stood, and have been appropriately mitigated and 
that mechanisms are in place to monitor the  
effectiveness of safety-related mitigations. In this 
sense, an assurance case is a structured argument 
for linking safety-related claims through a chain of 
arguments to a body of the appropriate evidence. 
One of the main benefits of structured arguments 
in assurance cases is to explicitly capture the causal 
dependencies between claims and the substantiating 
evidence. 

Altogether, assurance cases are the basis for judging 
that a technical system is acceptable for widespread 
use. Assurance cases also determine the level of 
scrutiny needed to develop and operate acceptably 
safe systems. More specifically, assurance cases 
determine constraints on the design, implementa-
tion, veryfication, and training strategies, and they 
demonstrate the contributions of corresponding 
artifacts and activities to the overall system safety. 

One may be confident in this assurance based on 
“the quality or state of being certain that the assur-
ance case is appropriately and effectively structured, 
and correct” [46]. A necessary aspect of gaining 
confidence in an assurance case is addressing un-
certainty, which, as we have seen above, may have 
several sources. Uncertainty, often impossible to 
eliminate, nevertheless undermines confidence and 
must therefore be sufficiently bounded. 

Recent extensions of assurance cases for reasoning 
about confidence and uncertainty [47] are a good 
starting point for estimating and managing aleatoric 
and epistemic uncertainties for safe AI systems. In 
particular, probability theory has been proposed 
for quantifying confidence and uncertainty [48], 
and epistemic uncertainty is quantified through the 
Dempster–Shafer theory of beliefs or Bayesian anal-
ysis [49], the use of Bayesian belief networks [50] 
[51] [52], Josang’s opinion triangle [47], evidential 
reasoning [53], and weighted averages [54]. 

4. Uncertainty Quantification
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However, a slight problem arises with quantifying 
confidence in assurance case arguments, as pro-
posed methods on Bayesian belief networks, Demp-
ster–Shafer theory, and similar forms of evidential 
reasoning can deliver implausible results [55, 46]. 
Without strong evidence that the quantified confi-
dence assessments are indeed trustworthy, there is 
no plausible justification for relying on any of these 
techniques in safety engineering. Alternatively, one 
may also look toward a value for the probability of 
perfection — based on extreme scrutiny of devel-
opment, artifacts, and code — which is then related 
to confidence [56] [57]. Qualitative approaches to-
ward uncertainty, on the other hand, focus on the 
reasoning and rationale behind any confidence by 
constructing an explicit confidence argument. For 
example, eliminative induction is increasing confi-
dence in assurance cases by removing sources of 
doubt and using Baconian37 probability to represent 
confidence [58]. Eliminative induction first identifies 
potential sources of doubt, so-called defeaters, and 
then works toward removing them or proving their 
irrelevancy. 

The search for defeaters, and their possible defeat, 
should be systematized and documented as essen-
tial parts of the case [59]. One systematic approach 
is through construction and dialectical considera-
tion of counterclaims and countercases. Counter- 
claims are natural in confirmation measures as stud-
ied in Bayesian confirmation theory, and counter-
cases are assurance cases for negated claims. 

Assurance cases have successfully been applied 
to many safety-critical systems, and they are also 
flexible enough to be adopted in systems with 
learning-enabled components. An overall assurance 
framework for AI systems with an emphasis on 
quantitative aspects, e.g., breaking down system- 
level safety targets to component-level requirements 
and supporting claims stated in reliability metrics, 

has recently been out-lined [60]. Requirements on 
assurance cases for autonomously acting vehicles 
with learning-enabled components are addressed, 
for example, by UL 4600.38 

A mixture of requirements and data-centric metrics 
together with corresponding verification techniques, 
static and dynamic [61], is needed to establish the 
safety of AI systems with ML components. 

A successful element in a successful deployment  
of safety assurance for AI systems is a library of pre- 
validated argument steps [62] [63, 64] together with 
adequate operators for instantiating and composing 
specific system-specific assurance cases from these 
pre-validated structured arguments. We also hypoth-
esize that because of the multitude of sources of 
uncertainty, assurance arguments for increasingly 
autonomous AI systems need to (1) stress rigor in 
assessing the evidence and reasoning employed 
and (2) systematize and automate the search for 
defeaters, the construction of cases and counter 
cases, and the management and representtation of 
dialectical examination. 

Increased rigor and automation in building and 
maintaining assurance cases should enable pro-
ductive interaction with tools for logical and proba-
bilistic reasoning and formal argumentation. Using 
frameworks such as STPA [65] to better capture and 
examine a component’s control actions in relation 
to the larger system-level safety contexts may be 
beneficial. How the influence of learning-enabled 
components is captured and reasoned within the 
AI control structure is of particular interest. Finally, 
rigorous assurance cases open new possibilities 
for online self-adaptation of safety arguments for 
determining safe behavior when operating in un-
certain contexts because they can be adapted, 
quickly and efficiently, to the ever-changing safety 
considerations of AI systems. 

35 Failure and Faulty are random variables, and the conditional probability P(Failure | Faulty) measures the uncertainty that a system 
is unsafe (Failure) given that the perception unit violates its specification (Faulty).   36 Including safety and security but also applying 
to all the other attributes of trustworthiness.     37 https://ntrs.nasa.gov/api/citations/20160013333/downloads/20160013333.pdf 
38 https://ul.org/UL4600
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A key issue for AI systems is rigorous safety analysis, 
which is based on a mixture of well-known verifica-
tion and validation techniques, with safety verification 
of learning-enabled components. Here, we focus on 
novel aspects of analyzing AI systems with ANN-based 
perception units only. 

What do we need to verify about ANN components 
to support AI system safety? Our starting point here is 
the component requirements as obtained by breaking 
down application-specific systems safety requirements 
to verification and validation requirements for the indi-
vidual components of AI systems. 

Because of mounting concerns about using ANNs 
for safety-related applications, new techniques have 
emerged to increase the trustworthiness of ANNs [66] 
[67] [68] [64]. A survey of this ever-growing number of 
methods and technologies is well beyond the scope 
of these notes. Indeed, individual methods are not 
lacking, but the safety relevance of many ANN analysis 
techniques (such as adversarial analysis) is questiona-
ble, particularly when the impact of the overall system 
within which the ANN is used is unclear [69]. 

What is needed is a systematic evaluation of individual 
analysis techniques. A central challenge is to ade-
quately measure and quantify how well and under 
which circumstances they improve confidence in the 
safe system behavior. A first step in this direction is 
provided in [70], which develops a safety pattern for 
choosing and composing analysis techniques based 
on how they contribute to identifying and mitigating 
systematic faults known to affect system safety. More 
generally, given an ANN and desired properties, we 
therefore define the goal of ANN analysis to improve 
confidence or, dually, reduce uncertainty, if the de-
sired properties hold up to tolerable quantities on the 
ANN. 

Testing 

The goal of ANN testing is to generate a set of test 
cases that can demonstrate confidence in an ANN’s 
performance, when passed, such that the ANN can 
support an assurance case. Usually, test case gene- 
ration is guided by structural and nonstructural cover-
age metrics [71]. 

Traditional structural coverage criteria from software 
testing usually cannot be applied directly to ANNs. For 
example, neuron coverage is trivially fulfilled in ANNs 
using a single test case. Moreover, MC/DC, when 

applied to ANNs, may lead to an exponential (in the 
number of neurons) number of branches to be inves-
tigated and therefore is not practical, as typical ANNs 
comprise millions of neurons. As usual in testing, the 
balance between the ability to find bugs and the com-
putational cost of test case generation is essential for 
the effectiveness of a test method [72].

Generating falsifying/adversarial test cases is generally 
performed using search heuristics based on gradient 
descent or evolutionary algorithms [73, 74] [75] [76]. 
These approaches may be able to find falsifying ex-
amples efficiently, but they usually do not provide an 
explicit level of confidence about the nonexistence of 
adversarial examples when the algorithm fails to find 
one. 

The work in [20] developed ANN-specific nonstructur-
al test coverage criteria for the robustness, interpret-
ability, completeness, and correctness of an ANN. A 
scenario coverage metric, for example, partitions the 
possible input space according to N attributes (e.g., 
snow, rain, …), and proposes, based on the existing 
work on combinatorial testing, efficient k-projection 
(for k = 0,…,N−1) coverage metrics as approximations 
of the exponential number of input partitions. In prin-
ciple, a “complete” (with respect to the available input 
data) set of attributes may be obtained through unsu-
pervised learning or clustering methods. These cover- 
age metrics are implemented in the NNDK testing 
toolkit for ANNs [77]. 

In [78], coverage is enforced to finite partitions of the 
input space, relying on predefined sets of application- 
specific scenario attributes. In a similar vein, the “box-
ing clever” technique focuses on distributing training 
data and divides the input domain into a series of rep-
resentative boxes. 

Many traditional test case generation techniques,  
such as fuzzing [79, 80, 75] [81], symbolic execution 
[82], concolic testing [83], mutation testing [84], and 
metamorphic testing [85], have been extended to sup-
port the verification of ANNs. Despite their effective-
ness in discovering various defects of ANNs together 
with their data-centric requirement specifications, it is 
not exactly clear how testing-based approaches can 
be efficiently integrated into the construction of con-
vincing safety argumentations for AI systems. A possi-
ble step in this direction, however, is the NNDK-based 
safety case in Figure 4, which makes the contribution 
and the rationale behind individual test metrics in es-
tablishing safety goals more explicit. 

5. Analysis
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Altogether, testing methods seem to be effective 
at discovering the defects of ANNs. It is unclear, 
however, how to measure the effectiveness of test 
coverage metrics in constructing sufficient confi-
dence — or dually, raising doubts — in a convincing 
assurance case. In addition, most testing-based ap-
proaches assume a fixed ANN. However, ANNs are 
learning-enabled and trained continuously on new 
data/scenarios. The challenge is to invent meth-
odologies for efficiently — and depending on the 
application context, in real time — retesting safety 
requirements for continuously evolving ANNs. This 
retesting methodology could be based on adapting 
corresponding assurance cases. 

Instead of validating individual learning-enabled 
components, the idea of scenario-based testing is 
to (1) automatically or manually identify a reasona-
bly small set of relevant dynamic situations or sce-
nario types; (2) check if the set of scenario types is 
complete; and then (3) derive system-specific tests 
for each scenario type. The need for a test-ending 
criterion immediately arises based on the following 
question: did we test all scenario types? In addition, 
did we sufficiently test each type with specific in-
stances?

The general approach to scenario-based testing is 
outlined in Figure 5. It is based on automated clus-
tering of real driving data and completeness checks 
for the clusters thus obtained [86].

Symbolic Verification

Safety verification problems for ANNs can be re-
duced to constraint solving problems, such as sat-
isfiability in propositional logic [87] [88], satisfiability 
modulo theories [89] [90] [91] [92], and mixed-inte-
ger linear programming [23]. These approaches typ-
ically do not scale up to the size of real-world ANNs 
with millions of neurons. Approximation techniques 
are applied to improve efficiency but usually at the 
expense of precision. Recent approaches based on 
global optimization potentially can address larger 
networks [93]. Compositional verification tech-
niques for scaling up ANN safety verification are 
largely missing. For the assume-guarantee style of 
reasoning applied to verifying an ANN-based auto-
motive safety controller, however, see [94]. 

Because symbolic safety verification technologies 
work on a model of an ANN, they might have cer-
tain defects due to implementation issues (for ex-

ample, rational numbers vs. IEEE floating-point im-
plementations). In addition, how to efficiently apply 
these techniques to continuously changing ANNs is 
unclear.

Runtime Verification

In runtime verification, a monitor observes the 
concrete execution of the system in question and 
checks for violations of stipulated properties. When 
the monitor detects a violation of a property, it no-
tifies a command module, which then isolates the 
cause of the violation and attempts to recover from 
the violation. In this way, runtime verification is a 
central element of FDIR-based40 fault-tolerant  
systems.

For the multitude of sources of uncertainty in AI 
systems, stringent real-time requirements, and ever- 
changing learning-enabled components, runtime 
verification is an essential element for the safety 
verification of AI systems. 

System requirements of the form “the system must 
perform action a within n seconds of event e” are 
common in the runtime monitoring of autono-
mous systems [95]. These types of properties are 
expressible in suitable sub-logics of metric temporal 
logic, such as GXW [96] [97, 52] and the timed ex-
tensions thereof [98]. These types of specifications 
are compiled into (timed) synchronous dataflows as 
the basis for efficient runtime monitors. A dynamic 
programming and rewriting-based algorithm for 
monitoring MTL formulas is described in [99]. More-
over, architectural design principles for monitoring 
distributed systems are needed to ensure that moni-
toring does not perturb the system (at least, not too 
much) [74]. In particular, the tutorial [100] discusses 
the challenges of instrumenting real-time systems 
so that the timing constraints of the system are 
respected. A recent tutorial describes state-of-the-
practice technology for generating runtime moni-
tors that capture the safe operational environment 
of systems with AI/ML components [101]. 

Altogether, runtime verification is an essential and 
attractive technique of any verification strategy for 
safe AI. Unlike static verification techniques, such as 
testing or symbolic verification, adaptation to learn-
ing-based components, such as ANNs, is unneces-
sary. In this way, runtime monitoring is an enabling 
verification technology for continuous assurance, 
based on the MAPE-K41 loop from autonomic com-

5. Analysis
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puting. The main challenge in deploying runtime 
monitoring, as with any other cyber-physical  
system, is to embed monitors in an efficient (for 
example, energy-efficient) way without perturbing 
the behavior of the AI system too much. 

Runtime monitoring may also be used to measure 
uncertainties in the input-output behavior of ANNs. 
For example, if an input is out-of-distribution of the 
training set, then one may conclude that the “cor-
rectness” of the corresponding ANN output may be 
doubtful. Such information about the uncertainty of 
a perception result may be useful input for planning 
in the deliberation stage. Uncertainty information 
about the perception unit is also used in Simplex 
architectures to switch to a safe(r) perception chan-
nel whenever the ANN output is doubtful. Clearly, 
the distance (in some given metric) of the input to 
the training input set may serve as a measure of 
the uncertainty of the input-output behavior of an 
ANN. However, this measure returns zero uncertain-
ty even for the “incorrect” behavior of the ANN on 
training inputs. Alternatively, [102] proposes to mon-
itor the neuronal activation pattern of some input 

and to compare it with neuronal activation pat- 
terns as learned during the ANN training phase.  
This measure of the input-output behavior certainty 
of an ANN is part of the assurance case for the 
ANN in Figure 4. In addition, applicable background 
knowledge and physical laws may also be used to 
monitor the plausibility of the input-output behavior 
of an ANN. 

In summary, because of the multitude of sources 
of uncertainty, the complexity of AI-based systems 
and the environments in which they operate, even 
if all the challenges for specification and verifica-
tion are solved, one will likely be unable to prove 
unconditional safe and correct operation. Situations 
in which we do not have a provable guarantee of 
correctness will always arise. Therefore, techniques 
for achieving fault tolerance and error resilience at 
run time must play a crucial role. There is, however, 
not yet a systematic understanding of what can be 
achieved at design time, how the design process 
can contribute to the safe and correct operation of 
the AI system at run time, and how the design-time 
and runtime techniques can interoperate effectively.

39 Adapted from: https://doi.org/10.1109/ITSC.2019.8917326   40 Fault Detection, Isolation, and Recovery.   41 Measure, Analyze, Plan, 
Execute; the K stands for knowledge.

Figure 5 Scenario-based testing.39 
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Validation and verification activities are usually com-
plemented with safety-by-construction design steps. 
We briefly describe some of the main challenges and 
initial approaches toward safety-by-design, namely, 
property-driven synthesis of learning-enabled com-
ponents, compositional construction of AI subsys-
tems and systems, and safety architectures for AI 
systems. The goal in this respect is a fundamental set 
of building blocks together with composition and in-
cremental change operators for safety-by-construc-
tion design and continual assurance of large classes 
of AI systems. 

Property-driven Synthesis 

Instead of using a posteriori verification of desirable 
properties of ANNs via static or dynamic verification 
technologies as outlined above, can we design, from 
scratch, a ML component that provably satisfies (pos-
sible in a robust interpretation) given formal specifi-
cations? For example, given the pre- and postcondi-
tions of an ANN, as obtained from breaking system 
safety envelopes down to individual learning-enabled 
components, can an ANN that satisfies the given 
safety specification be trained? Given a property 
expressed in logic, for example, one constructs a 
corresponding differentiable loss function for prop-
erty-driven training of the ANN. In this way, prop-
erty-driven synthesis needs to, among other things, 
design an appropriate training set, set up the initial 
structure of the ANN, and choose and adjust appro-
priate hyper-parameters for training. The selection of 
training sets and training is then guided by reducing 
an adequate measure of the uncertainty so that the 
ANN indeed satisfies the given specification. 

Progress is needed along all these fronts. Techniques 
of neuro-symbolic computation [103] [104] may be 
a good starting point, as they also try to integrate 
high-level reasoning with low-level perception such 
that neuro-symbolic methods have the pure neural, 
logical, and probabilistic methods as special cases.  
A short history and perspectives of knowledge- 
augmented ML are described in [32]. 

Compositional System Design 

The triad of perception, deliberation, and execution, 
as depicted in Figure 1, is the simplest possible archi-
tecture of an AI system. Often, deliberation and exe-
cution units are complex and mutually dependent for 
realizing a fine-grained control; perception may also 
depend on deliberation, say, in AI systems with active 

perception. Moreover, each stage of an AI system  
triad is usually decomposed into any number of 
functional units, including monitors and safe chan-
nels. For example, deliberation may include func-
tionnalities for modeling AI capabilities such as inter-
pretation and prediction, model building, derivation 
of knowledge, goal management, or planning, and 
perception is decomposed into a pipeline of tasks for, 
say, internal and external state estimation, sensor fu-
sion, object recognition, and object classification. This 
real-world architecture for realizing an autonomous 
driving function can be found, for example,  
in [105].42 

Traditional Simplex architectures [106] are used to 
address the performance and safety requirements of 
many automated and autonomous systems [107] [108] 
[109] [110] by leveraging runtime assurance, where the 
results of design-time verification are used to build a 
system that monitors itself and its environment at run 
time. More precisely, a Simplex architecture comprises 
(1) a performant controller under nominal operating 
conditions, which is designed to achieve high perfor-
mance, but it is not provably safe, (2) a safe controller 
that can be pre-certified to be safe, and (3) a decision 
module that is pre-certified (or safe-by-design) to mo-
nitor the state of the controlled system and its opera-
tional environment to check whether desired system 
safety specifications can be violated. If so, the decision 
module switches control from the nominal monitor to 
the safe monitor. A provably safe composition of Sim-
plex architectures is developed in the context of Soter 
[111], which also allows for switching to nominal cont-
rol to minimize performance penalties while retaining 
strong safety guarantees. 

Although compositional design operators have been 
developed for digital circuits and embedded systems, 
we do not yet have such comprehensive theories for 
AI systems. For example, if two ANNs are used for per-
ception on two types of sensors, say LiDAR and a ca-
mera, and individually satisfy their specifications under 
certain assumptions, under what conditions can they 
be used together to decrease perception uncertainty? 
More generally, how can we compositionally design 
safe and predictable perception pipelines? How can 
one design planning and deliberation components 
for overcoming the inherent limitations of their ANN-
based perception component? How can one design 
execution components for minimizing surprises in 
uncertain environments? Additionally, how can these 
components interact in a safe and quasi-predictable43 

manner?

6. Safety-by-Design
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42 This publication advocates the use of state-of-the-practice dependability and safety engineering methodologies as prescribed in cur-
rent industrial safety standards42 for saving SAE L3 and L4 automated driving capabilities.   43 That is, predictable up to acceptable levels.
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We have been arguing that traditional safety engi-
neering is unsuited for developing and operating AI 
systems. On the basis of this insight, we outlined a 
safety engineering methodology for AI that is cen-
tered around managing and assuring uncertainty to 
acceptable levels [112, 76] as the basis for predictable 
(up to acceptable tolerances) and safe AI systems. 

The proposed rigorous design methodology for safe 
AI is based on the central notion of a safety case for 
managing uncertainties. Our proposals are com-
patible with the emergent standard UL460044 on 
required properties for safety cases. In some sense, 
the depicted design methodology may also be con-
sidered an uncertainty-based amalgam of the para-
digms of data — with model-driven design. 

The main contribution lies in identifying the core 
challenges and possible research directions for the 
specification, design, analysis, assurance, and main-
tenance of safe AI (for a summary, see Table 1). This 
list, however, is incomplete, as we have omitted, for 
instance, all-important systems challenges due to 
interactive control between human operators and 
machine-based control. 

The identified challenges for safe AI, as listed in  
Table 1,do not seem insurmountable. The over- 
arching challenge rather lies in integrating indivi- 
dual methods into a coherent and comprehensive  
engineering framework for systematically managing  
and reducing uncertainty to tolerable quantities  
and demonstrating its relative merits in real-world  
AI systems. 

We have been working toward AI safety engineering, 
among others, with Fasten ( [113, 20] for checkable 
safety cases, evidential transactions in Evidentia/
CyberGSN for continual assurance and compliance 
[114], the neural network dependability kit [77] for 

analyzing ANNs, and risk-based safety envelopes for 
autonomous vehicles under perception uncertainty 
[115]. We are also currently working on concrete safe 
AI use cases to integrate these individual engineering 
nuggets and to elaborate on a generally useful ap-
proach for safe AI engineering. We hypothesize that 
uncertainty quantification also plays an increasingly 
prominent role in analyzing and certifying complex 
software systems because traditional notions of sys-
tem-level correctness are becoming less applicable 
for heterogeneous and ever-evolving software land-
scapes. 

There are related ideas on uncertainty quantification 
in engineering [80] for certifying that, with high 
probability, a real-valued response function of a giv-
en physical system does not exceed a given safety 
threshold. Uncertainty quantification also plays a piv-
otal role in minimizing uncertainties for ANNs [116]. 
We expect these types of techniques to provide a 
mathematical underpinning of a design calculus for 
safe AI. 

The ultimate goal in this respect is a rigorous engi-
neering framework based on pre-certified param-
eterized components, corresponding assurance 
arguments, and system composition operators (for 
example, for watchdogs, monitors, and redundant 
channels) from which complete systems and corre-
sponding assurance cases are constructed in a  
property-guided, traceable, and optimized manner. 

In addition, onboard management of uncertainty 
is used to design safe exploration strategies of un-
known territory based on the principle of managing 
uncertainty and to minimize surprises. This type of 
safe exploration of an AI system might even be com-
plemented with an online risk and safety assessment, 
together with corresponding online updates of safety 
cases and the uncertainty quantifications thereof.

7. Conclusions
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44 https://edge-case-research.com/ul4600/   45 That is, calculating from a set of observations the causal factors that produced them.
46 Cmp. AMLAS   47 In analogy to, say, Mils separation kernel protection profile.  
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Table 1. Safe AI Engineering Challenges. 

44 That is, calculating from a set of observations the causal factors that produced them. 
45 Cmp. AMLAS 
46 In analogy to, say, Mils separation kernel protection profile. 

Specification 

Challenge 

Uncertainty 

Challenge 

Assurance 
Challenge 

Design 

Challenge 

Analysis 
Challenge 

Maintenance 
Challenge 

• Provide the means for constructing (and maintaining) safety envelopes, either 

deductively from safety analysis or inductively from safe nominal behavior

• Provide the means for minimizing uncertainties related to safety envelopes 
with a given level of effort

• Provide the means for deriving safety requirements for learning-enabled 
components, which are sufficient for establishing AI system safety

• Provide the means for reducing specification uncertainty using deriving data 
requirements for learning-enabled components

• Identify all relevant sources of uncertainty for an AI system

• Provide adequate means for measuring uncertainty

• Calculate forward propagation of uncertainty, where the various sources of 
uncertainty are propagated through the model to predict overall uncertainty 

in the system response

• Identify and solve the relevant inverse45 uncertainty quantification problems 
for safe AI

• Predict (up to tolerable quantities) unsafe behavior of AI systems operating in 
uncertain environments

• Provide adequate measures of uncertainty for assuring AI system safety

• Construct and maintain evidence-based arguments for supporting the 
certainty and for rebutting the uncertainty of safety claims

• Identify useful safety case patterns46 for safe AI systems and identify 
corresponding operators for instantiating and composing these patterns

• Develop safety case patterns for different architectural designs of AI systems47

• Compositionally construct safe and quasi-predictable AI systems together 
with their safety cases

• Provide adequate means for measuring and reducing uncertainty in the input-
output behavior of learning-enabled components

• Define and measure the respective contribution of static and dynamic 
analysis techniques for learning-enabled systems to reduce safety-related 
uncertainty to tolerable levels

• Identify incremental change operators for maintaining the uncertainty and 
safety assurance of self-learning AI systems

• Safely adapt and optimize the situational behavior of an AI system (together 

with its safety cases based on the principle of minimizing uncertainty)
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Safe Intelligence — this forms the core brand of the 
Fraunhofer Institute for Cognitive Systems IKS. 
Connected cognitive systems drive innovation in 
many sectors, for example in autonomous vehicles, 
medical devices or intelligent automation within 
industry. They should always take full advantage of 
the potential offered by artificial intelligence, while 
remaining demonstrably safe and reliable at the 
same time. This is why Fraunhofer IKS researches 
both artificial intelligence and software engineering — 
we consider resilience and intelligence as part of the 
same process.

fortiss is the Free State of Bavaria research institute 
for software-intensive systems based in Munich.  
The institute collaborates on research, development 
and transfer projects together with universities and 
technology companies in Bavaria and other parts of 
Germany, as well as across Europe. 

The research activities focus on state-of-the-art 
methods, techniques and tools used in Software  
& Systems-, AI- and IoT-Engineering and their  
application with cognitive cyber-physical systems. 
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